A274032
Sum of n-th powers of the roots of x^3 + 9*x^2 - x - 1.
Original entry on oeis.org
3, -9, 83, -753, 6851, -62329, 567059, -5159009, 46935811, -427014249, 3884905043, -35344223825, 321555905219, -2925462465753, 26615373873171, -242142271419073, 2202970354179075, -20042260085157577, 182341168849178195, -1658909809373582257
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Roman Witula and Damian Slota, Quasi-Fibonacci Numbers of Order 11, Journal of Integer Sequences, Vol. 10 (2007), Article 07.8.5
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (-9,1,1).
A274592
Sum of n-th powers of the roots of x^3 -31* x^2 - 25*x - 1.
Original entry on oeis.org
3, 31, 1011, 32119, 1020995, 32454831, 1031656755, 32793751175, 1042430160131, 33136210400191, 1053316070160371, 33482245865136407, 1064315659783638083, 33831894915991351119, 1075430116136187973171, 34185195288781394584359, 1086660638750543922795523
Offset: 0
-
LinearRecurrence[{31,25,1},{3,31,1011},20] (* Harvey P. Dale, Feb 02 2022 *)
-
Vec((3-62*x-25*x^2)/(1-31*x-25*x^2-x^3) + O(x^20)) \\ Colin Barker, Jun 30 2016
-
polsym(x^3 -31* x^2 - 25*x - 1, 30) \\ Charles R Greathouse IV, Jul 20 2016
A320918
Sum of n-th powers of the roots of x^3 + 9*x^2 + 20*x - 1.
Original entry on oeis.org
3, -9, 41, -186, 845, -3844, 17510, -79865, 364741, -1667859, 7636046, -35002493, 160633658, -738017016, 3394477491, -15629323441, 72036344133, -332346150886, 1534759151873, -7093873005004, 32817327856690, -151943731458257, 704053152985509, -3264786419847751
Offset: 0
-
a := proc(n) option remember; if n < 3 then [3, -9, 41][n+1] else
-9*a(n-1) - 20*a(n-2) + a(n-3) fi end: seq(a(n), n=0..32); # Peter Luschny, Oct 25 2018
-
CoefficientList[Series[(3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3) , {x, 0, 50}], x] (* Amiram Eldar, Dec 09 2018 *)
LinearRecurrence[{-9,-20,1},{3,-9,41},30] (* Harvey P. Dale, Dec 10 2023 *)
-
polsym(x^3 + 9*x^2 + 20*x - 1, 25) \\ Joerg Arndt, Oct 24 2018
-
Vec((3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3) + O(x^30)) \\ Colin Barker, Dec 09 2018
A287396
a(n) = (7*(csc(2*Pi/7))^2)^n + (7*(csc(4*Pi/7))^2)^n + (7*(csc(8*Pi/7))^2)^n.
Original entry on oeis.org
3, 56, 1568, 53312, 1931776, 71300096, 2645479424, 98305622016, 3654656065536, 135885355483136, 5052615982317568, 187873377732526080, 6985794697679601664, 259756778648305139712, 9658687473893481906176, 359144636249686988029952, 13354285908291066433372160
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..600
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Roman Witula and Damian Slota, Quasi-Fibonacci Numbers of Order 11, Journal of Integer Sequences, Vol. 10 (2007), Article 07.8.5
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (56,-784,3136).
-
LinearRecurrence[{56,-784,3136},{3,56,1568},30] (* Harvey P. Dale, Aug 08 2017 *)
-
Vec((3 - 28*x)*(1 - 28*x) / (1 - 56*x + 784*x^2 - 3136*x^3) + O(x^30)) \\ Colin Barker, May 25 2017
-
polsym(x^3 - 56*x^2 + 784* x - 3136, 20) \\ Joerg Arndt, May 26 2017
A287405
a(n) = (7*(cot(1*Pi/7))^2)^n + (7*(cot(2*Pi/7))^2)^n + (7*(cot(4*Pi/7))^2)^n.
Original entry on oeis.org
3, 35, 931, 27587, 830403, 25054435, 756187747, 22824258947, 688917131651, 20793986742179, 627637106311971, 18944339609269571, 571808137046942019, 17259221092289630307, 520945214725090792931, 15723995613526902256387, 474606601742375424297731
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..650
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6.
- Index entries for linear recurrences with constant coefficients, signature (35,-147,49).
-
LinearRecurrence[{35,-147,49},{3,35,931},30] (* Harvey P. Dale, Mar 15 2018 *)
-
Vec((3 - 7*x)*(1 - 21*x) / (1 - 35*x + 147*x^2 - 49*x^3) + O(x^30)) \\ Colin Barker, May 26 2017
-
polsym(x^3 - 35*x^2 + 147*x - 49, 20) \\ Joerg Arndt, May 26 2017
A322461
Sum of n-th powers of the roots of x^3 + 8*x^2 + 5*x - 1.
Original entry on oeis.org
3, -8, 54, -389, 2834, -20673, 150825, -1100401, 8028410, -58574450, 427353149, -3117924532, 22748056061, -165967472679, 1210881576595, -8834467193304, 64455362190778, -470259679983109, 3430966161717678, -25031975531635101, 182630713764509309
Offset: 0
-
LinearRecurrence[{-8, -5, 1}, {3, -8, 54}, 50] (* Amiram Eldar, Dec 09 2018 *)
-
Vec((3 + x)*(1 + 5*x) / (1 + 8*x + 5*x^2 - x^3) + O(x^25)) \\ Colin Barker, Dec 09 2018
-
polsym(x^3 + 8*x^2 + 5*x - 1, 25) \\ Joerg Arndt, Dec 17 2018
Showing 1-6 of 6 results.
Comments