A274078 T(n,m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact differential time dependence.
3, 15, 3, 315, 27, 27, 2835, 945, 27, 81, 155925, 2025, 2025, 135, 27, 6081075, 779625, 30375, 405, 243, 243, 638512875, 212837625, 654885, 42525, 8505, 1215, 729, 10854718875, 638512875, 58046625, 4465125, 127575, 3645, 729, 729
Offset: 1
Examples
n\m| 1 2 3 4 ---+--------------------- 1 | 3; 2 | 15, 3; 3 | 315, 27, 27; 4 | 2835, 945, 27, 81;
Links
- Bradley Klee, Plane Pendulum and Beyond by Phase Space Geometry, arXiv:1605.09102 [physics.class-ph], 2016.
Crossrefs
Programs
-
Mathematica
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]] Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]] RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]}, Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][ Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]] dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]] dtCoefficients[n_] := With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]] Flatten[Denominator[dtCoefficients[10]]]
Comments