cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274078 T(n,m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact differential time dependence.

Original entry on oeis.org

3, 15, 3, 315, 27, 27, 2835, 945, 27, 81, 155925, 2025, 2025, 135, 27, 6081075, 779625, 30375, 405, 243, 243, 638512875, 212837625, 654885, 42525, 8505, 1215, 729, 10854718875, 638512875, 58046625, 4465125, 127575, 3645, 729, 729
Offset: 1

Views

Author

Bradley Klee, Jun 09 2016

Keywords

Comments

Triangle read by rows (see example). Comments of A274076 give a definition of the fraction triangle, which determines to arbitrary precision the differential time dependence for the time-independent solution (cf. A273506, A273507) of the plane pendulum's equations of motion. For more details see "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n\m|    1    2    3    4
---+---------------------
1  |    3;
2  |   15,   3;
3  |  315,  27,  27;
4  | 2835, 945,  27,  81;
		

Crossrefs

Numerators: A274076. Phase Space Trajectory: A273506, A273507. Time Dependence: A274130, A274131. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
    dtCoefficients[n_] :=  With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
    Flatten[Denominator[dtCoefficients[10]]]