A274080 Table read by rows: row n gives all numbers less than n in the same row, column, or diagonal as n in the natural numbers read by antidiagonals.
1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 3, 4, 5, 1, 2, 4, 2, 3, 4, 5, 7, 2, 3, 5, 6, 7, 8, 1, 3, 6, 7, 8, 9, 1, 2, 4, 7, 3, 4, 5, 7, 8, 11, 1, 4, 5, 6, 8, 9, 11, 12, 2, 5, 6, 9, 10, 11, 12, 13, 1, 3, 6, 10, 11, 12, 13, 14, 1, 2, 4, 7, 11, 3, 5, 7, 8, 11, 12, 16, 2, 6, 7
Offset: 1
Examples
A000027 read by antidiagonals is: 1 2 4 7 3 5 8 6 9 ... Thus: Row 1: [] Row 2: [1] Row 3: [1, 2] Row 4: [1, 2] Row 5: [1, 2, 3, 4] Row 6: [1, 3, 4, 5] Row 7: [1, 2, 4] Row 8: [2, 3, 4, 5, 7] Row 9: [2, 3, 5, 6, 7, 8]
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.List (sort, nub) a274080 n = a274080_list !! (n - 1) a274080_list = concatMap a274080_row [1..] a274080_tabf = map a274080_row [1..] a274080_row n = nub $ sort $ concatMap (\f -> f n) [a274079_row, a273825_row, a273824_row, a273823_row]
-
Mathematica
nn = 18; t = Table[(n^2 - n)/2 + Accumulate@ Range[n - 1, Ceiling[(Sqrt[9 + 8 nn] - 3)/2]] + 1, {n, Ceiling[(Sqrt[9 + 8 nn] - 3)/2] + 1}]; Table[Function[a, Function[p, Most@ Union@ Flatten@ {Map[a[[#1, #2]] & @@ # &, Most@ NestWhileList[# - 1 &, First@ p, ! MemberQ[#, 0] &]], Range[SelectFirst[Reverse@ Join[{0}, First@ t], n >= # &], n - 1], Transpose[a][[ p[[1, 2]] ]], a[[ p[[1, 1]] ]]}]@ Position[a, n]]@ Array[t[[#1, #2]] &, First@ Position[t, n]], {n, nn}] // Flatten (* Michael De Vlieger, Jun 29 2016, Version 10 *)