cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274092 a(n) = nearest integer to k^2*sin(sqrt(k)+j*Pi/2) where n = 3*k+j, 0<=j<3.

Original entry on oeis.org

0, 0, 0, 1, 1, -1, 4, 1, -4, 9, -1, -9, 15, -7, -15, 20, -15, -20, 23, -28, -23, 23, -43, -23, 20, -61, -20, 11, -80, -11, -2, -100, 2, -21, -119, 21, -46, -137, 46, -76, -151, 76, -111, -162, 111, -150, -167, 150, -194, -167, 194, -240, -161, 240, -289, -147, 289, -339, -125, 339, -389, -95, 389
Offset: 0

Views

Author

N. J. A. Sloane, Jun 10 2016

Keywords

Crossrefs

Programs

  • Maple
    Digits:=50:
    ft:=proc(n,t) local k,j;
    j:=(n mod t); k:=(n-j)/t;
    round(evalf(k^2*sin(sqrt(k)+j*Pi/2)));
    end;
    [seq(ft(n,3),n=0..120)];
  • Python
    from sympy import sin, sqrt, pi
    def A274092(n):
        k, j = divmod(n,3)
        return int((k**2*sin(sqrt(k)+j*pi/2)).round()) # Chai Wah Wu, Jun 10 2016