cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274100 Number of partitions of 2^n into at most four parts.

Original entry on oeis.org

1, 2, 5, 15, 64, 351, 2280, 16335, 123464, 959631, 7566280, 60090255, 478968264, 3824743311, 30569959880, 244447781775, 1955134763464, 15639288341391, 125107148059080, 1000828550570895, 8006513870533064, 64051652831273871, 512411390124519880
Offset: 0

Views

Author

N. J. A. Sloane, Jun 11 2016

Keywords

Crossrefs

A subsequence of A001400. Cf. A274099.

Programs

  • PARI
    \\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
    b(n) = round(real((68+36*(-1)^n+18*((-I)^n+I^n)+(16*exp(-2/3*I*n*Pi)*(1+I*sqrt(3)+2*exp((4*I*n*Pi)/3)))/(1+(-1)^(1/3))+59*(1+n)+9*(-1)^n*(1+n)+18*(1+n)*(2+n)+2*(1+n)*(2+n)*(3+n))/288))
    vector(50, n, n--; b(2^n)) \\ Colin Barker, Jun 12 2016

Formula

Coefficient of x^(2^n) in 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
Conjectures from Colin Barker, Jun 12 2016: (Start)
a(n) = 14*a(n-1)-55*a(n-2)+50*a(n-3)+56*a(n-4)-64*a(n-5) for n>6.
G.f.: (1-12*x+32*x^2+5*x^3-27*x^4-18*x^5-16*x^6) / ((1-x)*(1+x)*(1-2*x)*(1-4*x)*(1-8*x)).
(End)

Extensions

More terms from Colin Barker, Jun 12 2016