cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A274099 Number of partitions of n*(n-1)/2 into at most four parts.

Original entry on oeis.org

1, 1, 3, 9, 23, 54, 120, 249, 478, 864, 1495, 2484, 3969, 6136, 9234, 13561, 19464, 27378, 37845, 51488, 69012, 91260, 119239, 154078, 197026, 249535, 313290, 390144, 482120, 591519, 720954, 873264, 1051513, 1259130, 1499950, 1778097, 2097984, 2464489
Offset: 1

Views

Author

N. J. A. Sloane, Jun 11 2016

Keywords

Crossrefs

A subsequence of A001400. Cf. A274100.

Programs

  • Mathematica
    Length[IntegerPartitions[#,4]]&/@Accumulate[Range[0,40]] (* Harvey P. Dale, Jul 08 2022 *)
  • PARI
    \\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
    b(n) = round(real((68+36*(-1)^n+18*((-I)^n+I^n)+(16*exp(-2/3*I*n*Pi)*(1+I*sqrt(3)+2*exp((4*I*n*Pi)/3)))/(1+(-1)^(1/3))+59*(1+n)+9*(-1)^n*(1+n)+18*(1+n)*(2+n)+2*(1+n)*(2+n)*(3+n))/288))
    vector(50, n, b(n*(n-1)/2)) \\ Colin Barker, Jun 12 2016

Formula

Coefficient of x^(n*(n-1)/2) in 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
Empirical g.f.: (1 -5*x +15*x^2 -30*x^3 +54*x^4 -77*x^5 +109*x^6 -128*x^7 +150*x^8 -148*x^9 +150*x^10 -128*x^11 +109*x^12 -77*x^13 +54*x^14 -30*x^15 +15*x^16 -5*x^17 +x^18) / ((1 -x)^7*(1 +x^2)^3*(1 +x +x^2)*(1 +x^4)). - Colin Barker, Jun 12 2016

Extensions

More terms from Colin Barker, Jun 12 2016

A274232 Number of partitions of 2^n into at most three parts.

Original entry on oeis.org

1, 2, 4, 10, 30, 102, 374, 1430, 5590, 22102, 87894, 350550, 1400150, 5596502, 22377814, 89494870, 357946710, 1431721302, 5726754134, 22906754390, 91626493270, 366504924502, 1466017600854, 5864066209110, 23456256447830, 93825009014102, 375300002501974
Offset: 0

Views

Author

Colin Barker, Jun 15 2016

Keywords

Crossrefs

A subsequence of A001399. Cf. A274100, A274233.

Programs

  • PARI
    \\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)*(1-x^3)).
    b(n) = round(real((47+9*(-1)^n + 8*exp(-2/3*I*n*Pi) + 8*exp((2*I*n*Pi)/3) + 36*n+6*n^2)/72))
    vector(50, n, n--; b(2^n))

Formula

Coefficient of x^(2^n) in 1/((1-x)*(1-x^2)*(1-x^3)).
Conjectures: (Start)
a(n) = (8+3*2^(1+n)+4^n)/12 for n>0.
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3) for n>3.
G.f.: (1-5*x+4*x^2+2*x^3) / ((1-x)*(1-2*x)*(1-4*x)).
(End)

A274271 Number of partitions of 3^n into at most four parts.

Original entry on oeis.org

1, 3, 18, 225, 4410, 105903, 2746098, 73140525, 1965803130, 52995903003, 1430162760978, 38607856205625, 1042353276205050, 28143008896575303, 759856474192364658, 20516081909157771525, 553933825501236490170, 14956209814120079146803, 403817633711525094117138
Offset: 0

Views

Author

Colin Barker, Jun 17 2016

Keywords

Crossrefs

A subsequence of A001400.
Cf. A274100 (2^n), A274272 (5^n).

Programs

  • PARI
    \\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
    b(n) = round(real(68+36*(-1)^n+18*((-I)^n+I^n)+(16*exp(-2/3*I*n*Pi)*(1+I*sqrt(3)+2*exp((4*I*n*Pi)/3)))/(1+(-1)^(1/3))+59*(1+n)+9*(-1)^n*(1+n)+18*(1+n)*(2+n)+2*(1+n)*(2+n)*(3+n))/288)
    vector(20, n, n--; b(3^n))

Formula

Coefficient of x^(3^n) in 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
Conjectures (Start)
a(n) = ((3+3^n)^2*(9+3^n))/144 for n>1.
a(n) = 40*a(n-1)-390*a(n-2)+1080*a(n-3)-729*a(n-4) for n>4.
G.f.: (1-37*x+288*x^2-405*x^3-81*x^4) / ((1-x)*(1-3*x)*(1-9*x)*(1-27*x)).
(End)

A274272 Number of partitions of 5^n into at most four parts.

Original entry on oeis.org

1, 6, 185, 15246, 1736385, 212946246, 26516391385, 3312004971246, 413937039016385, 51740540399346246, 6467527813385891385, 808439983261977471246, 101054973072475964016385, 12631871013177766274346246, 1578983861125177809948391385
Offset: 0

Views

Author

Colin Barker, Jun 17 2016

Keywords

Crossrefs

A subsequence of A001400.
Cf. A274100 (2^n), A274271 (3^n).

Programs

  • PARI
    \\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
    b(n) = round(real(68+36*(-1)^n+18*((-I)^n+I^n)+(16*exp(-2/3*I*n*Pi)*(1+I*sqrt(3)+2*exp((4*I*n*Pi)/3)))/(1+(-1)^(1/3))+59*(1+n)+9*(-1)^n*(1+n)+18*(1+n)*(2+n)+2*(1+n)*(2+n)*(3+n))/288)
    vector(20, n, n--; b(5^n))

Formula

Coefficient of x^(5^n) in 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
Conjectures (Start)
a(n) = (57+8*(-1)^n+63*5^n+3*5^(1+2*n)+125^n)/144.
a(n) = 155*a(n-1)-3874*a(n-2)+15470*a(n-3)+3875*a(n-4)-15625*a(n-5) for n>4.
G.f.: (1-149*x+3129*x^2-5655*x^3-6750*x^4) / ((1-x)*(1+x)*(1-5*x)*(1-25*x)*(1-125*x)).
(End)
Showing 1-4 of 4 results.