A274099 Number of partitions of n*(n-1)/2 into at most four parts.
1, 1, 3, 9, 23, 54, 120, 249, 478, 864, 1495, 2484, 3969, 6136, 9234, 13561, 19464, 27378, 37845, 51488, 69012, 91260, 119239, 154078, 197026, 249535, 313290, 390144, 482120, 591519, 720954, 873264, 1051513, 1259130, 1499950, 1778097, 2097984, 2464489
Offset: 1
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Length[IntegerPartitions[#,4]]&/@Accumulate[Range[0,40]] (* Harvey P. Dale, Jul 08 2022 *)
-
PARI
\\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)). b(n) = round(real((68+36*(-1)^n+18*((-I)^n+I^n)+(16*exp(-2/3*I*n*Pi)*(1+I*sqrt(3)+2*exp((4*I*n*Pi)/3)))/(1+(-1)^(1/3))+59*(1+n)+9*(-1)^n*(1+n)+18*(1+n)*(2+n)+2*(1+n)*(2+n)*(3+n))/288)) vector(50, n, b(n*(n-1)/2)) \\ Colin Barker, Jun 12 2016
Formula
Coefficient of x^(n*(n-1)/2) in 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
Empirical g.f.: (1 -5*x +15*x^2 -30*x^3 +54*x^4 -77*x^5 +109*x^6 -128*x^7 +150*x^8 -148*x^9 +150*x^10 -128*x^11 +109*x^12 -77*x^13 +54*x^14 -30*x^15 +15*x^16 -5*x^17 +x^18) / ((1 -x)^7*(1 +x^2)^3*(1 +x +x^2)*(1 +x^4)). - Colin Barker, Jun 12 2016
Extensions
More terms from Colin Barker, Jun 12 2016