A274106 Triangle read by rows: T(n,k) = total number of configurations of k nonattacking bishops on the white squares of an n X n chessboard (0 <= k <= n-1+[n=0]).
1, 1, 1, 2, 1, 4, 2, 1, 8, 14, 4, 1, 12, 38, 32, 4, 1, 18, 98, 184, 100, 8, 1, 24, 188, 576, 652, 208, 8, 1, 32, 356, 1704, 3532, 2816, 632, 16, 1, 40, 580, 3840, 12052, 16944, 9080, 1280, 16, 1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32, 1, 60, 1390, 16000, 98292, 322848, 540080, 412800, 116656, 7744, 32
Offset: 0
Examples
Triangle begins: 1; 1; 1, 2; 1, 4, 2; 1, 8, 14, 4; 1, 12, 38, 32, 4; 1, 18, 98, 184, 100, 8; 1, 24, 188, 576, 652, 208, 8; 1, 32, 356, 1704, 3532, 2816, 632, 16; 1, 40, 580, 3840, 12052, 16944, 9080, 1280, 16; 1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32; 1, 60, 1390, 16000, 98292, 322848, 540080, 412800, 116656, 7744, 32; ... From _Eder G. Santos_, Dec 16 2024: (Start) For example, for n = 3, k = 2, the T(3,2) = 2 nonattacking configurations are: +---+---+---+ +---+---+---+ | | B | | | | | | +---+---+---+ +---+---+---+ | | | | , | B | | B | +---+---+---+ +---+---+---+ | | B | | | | | | +---+---+---+ +---+---+---+ (End)
Links
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, Duke Mathematical Journal 13.2 (1946): 259-268. See Section 9.
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, in Combinatorics, Duke Mathematical Journal, 13.2 (1946): 259-268. See Section 9. [Annotated scanned copy]
- J. Perott, Sur le problème des fous, Bulletin de la S. M. F., tome 11 (1883), pp. 173-186.
- Eder G. Santos, Counting non-attacking chess pieces placements: Bishops and Anassas. arXiv:2411.16492 [math.CO], 2024. (considered as black board).
- Eric Weisstein's World of Mathematics, White Bishop Graph.
Crossrefs
Programs
-
Maple
with(combinat): with(gfun): T := n -> add(stirling2(n+1,n+1-k)*x^k, k=0..n): # bishops on white squares bish := proc(n) local m,k,i,j,t1,t2; global T; if n=0 then return [1] fi; if (n mod 2) = 0 then m:=n/2; t1:=add(binomial(m,k)*T(2*m-1-k)*x^k, k=0..m); else m:=(n-1)/2; t1:=add(binomial(m,k)*T(2*m-k)*x^k, k=0..m+1); fi; seriestolist(series(t1,x,2*n+1)); end: for n from 0 to 12 do lprint(bish(n)); od:
-
Mathematica
T[n_] := Sum[StirlingS2[n+1, n+1-k]*x^k, {k, 0, n}]; bish[n_] := Module[{m, t1, t2}, If[Mod[n, 2] == 0, m = n/2; t1 = Sum[Binomial[m, k]*T[2*m-1-k]*x^k, {k, 0, m}], m = (n-1)/2; t1 = Sum[Binomial[m, k]*T[2*m - k]*x^k, {k, 0, m+1}]]; CoefficientList[t1 + O[x]^(2*n+1), x]]; Table[bish[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 25 2022, after Maple code *)
-
SageMath
def stirling2_negativek(n, k): if k < 0: return 0 else: return stirling_number2(n, k) print([sum([binomial(floor(n/2), j)*stirling2_negativek(n-j, n-k) for j in [0..k]]) for n in [0..10] for k in [0..n-1+kronecker_delta(n,0)]]) # Eder G. Santos, Dec 01 2024
Formula
From Eder G. Santos, Dec 01 2024: (Start)
T(n,k) = Sum_{j=0..k} binomial(floor(n/2),j) * Stirling2(n-j,n-k).
T(n,k) = T(n-1,k) + (n-k+1-A000035(n)) * T(n-1,k-1), T(n,0) = 1, T(0,k) = delta(k,0). (End)
Extensions
T(0,0) prepended by Eder G. Santos, Dec 01 2024
Comments