A274113 Number of equivalence classes of ballot paths of length n for the string dud.
1, 1, 1, 1, 2, 3, 5, 7, 11, 16, 26, 39, 63, 95, 154, 235, 381, 585, 948, 1464, 2373, 3682, 5967, 9293, 15060, 23531, 38131, 59741, 96801, 152020, 246310, 387611, 627985, 990027, 1603893, 2532609, 4102726, 6487600, 10509114, 16639214, 26952186, 42722941, 69199472
Offset: 0
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..300
- K. Manes, A. Sapounakis, I. Tasoulas, P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015, proposition 3.6.
Programs
-
Mathematica
terms = 43; y[] = 0; Do[y[x] = (-1+x^2-x^4+(2x-3x^2-2x^3+2x^4+2x^5-2x^6) y[x]^2 + (x^2-x^3-x^4) y[x]^3)/(-1+3x+x^2-3x^3-x^4+ x^5) + O[x]^terms, terms]; CoefficientList[y[x], x] (* Jean-François Alcover, Oct 07 2018 *)
-
PARI
x='x; y='y; Fxy = x^2*(1-x-x^2)*y^3 + 2*x*(1-3/2*x-x^2+x^3+x^4-x^5)*y^2 + (1-3*x-x^2+3*x^3+x^4-3*x^5)*y - 1+x^2-x^4; seq(N) = { my(y0 = 1 + O('x^N), y1=0); for (k = 1, N, y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0); if (y1 == y0, break()); y0 = y1); Vec(y0); }; seq(43) \\ Gheorghe Coserea, Jan 05 2017
Formula
G.f. y satisfies: 0 = x^2*(1-x-x^2)*y^3 + 2*x*(1-3/2*x-x^2+x^3+x^4-x^5)*y^2 + (1-3*x-x^2+3*x^3+x^4-3*x^5)*y - 1+x^2-x^4. - Gheorghe Coserea, Jan 05 2017
Extensions
a(0)=1 prepended by Gheorghe Coserea, Jan 05 2017