cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274113 Number of equivalence classes of ballot paths of length n for the string dud.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 7, 11, 16, 26, 39, 63, 95, 154, 235, 381, 585, 948, 1464, 2373, 3682, 5967, 9293, 15060, 23531, 38131, 59741, 96801, 152020, 246310, 387611, 627985, 990027, 1603893, 2532609, 4102726, 6487600, 10509114, 16639214, 26952186, 42722941, 69199472
Offset: 0

Views

Author

N. J. A. Sloane, Jun 17 2016

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 43; y[] = 0; Do[y[x] = (-1+x^2-x^4+(2x-3x^2-2x^3+2x^4+2x^5-2x^6) y[x]^2 + (x^2-x^3-x^4) y[x]^3)/(-1+3x+x^2-3x^3-x^4+ x^5) + O[x]^terms, terms]; CoefficientList[y[x], x] (* Jean-François Alcover, Oct 07 2018 *)
  • PARI
    x='x; y='y;
    Fxy = x^2*(1-x-x^2)*y^3 + 2*x*(1-3/2*x-x^2+x^3+x^4-x^5)*y^2 + (1-3*x-x^2+3*x^3+x^4-3*x^5)*y - 1+x^2-x^4;
    seq(N) = {
      my(y0 = 1 + O('x^N), y1=0);
      for (k = 1, N,
        y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
        if (y1 == y0, break()); y0 = y1);
      Vec(y0);
    };
    seq(43)  \\ Gheorghe Coserea, Jan 05 2017

Formula

G.f. y satisfies: 0 = x^2*(1-x-x^2)*y^3 + 2*x*(1-3/2*x-x^2+x^3+x^4-x^5)*y^2 + (1-3*x-x^2+3*x^3+x^4-3*x^5)*y - 1+x^2-x^4. - Gheorghe Coserea, Jan 05 2017

Extensions

a(0)=1 prepended by Gheorghe Coserea, Jan 05 2017