cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274114 Number of equivalence classes of Dyck paths of semilength n for the string uuu.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 37, 81, 180, 405, 917, 2090, 4795, 11054, 25589, 59475, 138712, 324483, 761163, 1790028, 4219139, 9965328, 23582735, 55906518, 132751359, 315700152, 751837207, 1792853416, 4280568845, 10232005939, 24484563844, 58650123942, 140625967460, 337488663293, 810641635789
Offset: 0

Views

Author

N. J. A. Sloane, Jun 17 2016

Keywords

Crossrefs

Programs

  • Mathematica
    F[x_, y_] = x y^3 - (1 + 2x) y^2 + (1 + 3x) y - x;
    Y[n_] := Module[{y0 = 1, y1 = 0}, For[k = 1, k <= n, k++, y1 = y0 - F[x, y0] / (D[F[x, y], y] /. y -> y0) + O[x]^n // Normal; If[y1 == y0, Break[]]; y0 = y1]; y0];
    seq[n_] := Module[{y = Y[n]}, ((1 + x y)/(1 - x (y-1)^2)) + O[x]^n // CoefficientList[#, x]&];
    seq[36] (* Jean-François Alcover, Jul 27 2018, after Gheorghe Coserea *)
  • PARI
    x='x; y='y;
    Fxy = x*y^3 - (1+2*x)*y^2 + (1+3*x)*y - x;
    Y(N) = {
      my(y0 = 1 + O('x^N), y1=0);
      for (k = 1, N,
        y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
        if (y1 == y0, break()); y0 = y1);
      y0;
    };
    seq(N) = my(y = Y(N)); Vec((1 + x*y)/(1 - x*(y-1)^2));
    seq(35) \\ Gheorghe Coserea, Jan 05 2017

Formula

A(x) = (1 + x*y)/(1 - x*(y-1)^2), where 0 = x*y^3 - (1+2*x)*y^2 + (1+3*x)*y - x with y(0)=1. - Gheorghe Coserea, Jan 05 2017
a(n) ~ sqrt(51/4 + 577*sqrt(2)/64 + 19*sqrt(180250 + 127456*sqrt(2))/448) * (sqrt(13 + 16*sqrt(2))/2 - 1/2)^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Apr 25 2020

Extensions

a(0)=1 prepended and more terms added by Gheorghe Coserea, Jan 05 2017