cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A274119 a(n) = (Product_{i=0..4}(i*n+2) - Product_{i=0..4}(-i*n-1))/(4*n+3).

Original entry on oeis.org

11, 120, 435, 1064, 2115, 3696, 5915, 8880, 12699, 17480, 23331, 30360, 38675, 48384, 59595, 72416, 86955, 103320, 121619, 141960, 164451, 189200, 216315, 245904, 278075, 312936, 350595, 391160, 434739, 481440, 531371, 584640
Offset: 0

Views

Author

Hong-Chang Wang, Jun 10 2016

Keywords

Comments

Sequence is inspired by A273983. The same argument as in A273889 can be used here to prove the expression evaluates to an integer.
Since Product_{i=0..n}(i*k+a) - Product_{i=0..n}(-i*k-b) ≡ 0 mod (n*k+a+b), then define B(n,k,a,b) = (Product_{i=0..n}(i*k+a) - Product_{i=0..n}(-i*k-b))/(n*k+a+b), with n*k+a+b <> 0, n >= 0 and k,a,b are integers, such that B(2*n,2,2,1) = (Product_{i=0..2*n}(2*i+2) - Product_{i=0..2*n}(-2*i-1))/ (4*n+3) = A273889(n+1), n >= 0; B(2*n,3,2,1) = (Product_{i=0..2*n}(3*i+2) - Product_{i=0..2*n}(-3*i-1))/(6*n+3) = A274117(n+1), n >= 0; B(2,n,2,1) = (Product_{i=0..2}(i*n+2) - Product_{i=0..2}(-i*n-1))/(2*n+3) = A008585(n+1), n >= 0; and a(n) is B(4,n,2,1). - Hong-Chang Wang, Jun 17 2016

Examples

			a(0) = B(4,0,2,1) = (2*2*2*2*2 + 1*1*1*1*1)/3 = 11.
a(1) = B(4,1,2,1) = (2*3*4*5*6 + 1*2*3*4*5)/7 = 120.
a(2) = B(4,2,2,1) = (2*4*6*8*10 + 1*3*5*7*9)/11 = 435.
		

Crossrefs

Programs

  • Mathematica
    B[n_, k_] := (Product[k (i - 1) + 1, {i, 2 n - 1}] + Product[k (i - 1) + 2, {i, 2 n - 1}])/(2 k (n - 1) + 3); Table[B[3, n], {n, 0, 31}] (* Michael De Vlieger, Jun 10 2016 *)
  • Python
    # subroutine
    def B (n,k,a,b):
        pa = pb = 1
        for i in range(n+1):
            pa *= (i*k+a)
            pb *= (-i*k-b)
        m = n*k+a+b
        p = pa-pb
        if m == 0:
            return "NaN"
        else:
            return p/m
    # main program
    for j in range(101):
        print(str(j)+" "+str(B(4,j,2,1)))  # Hong-Chang Wang, Jun 14 2016

Formula

a(n) = B(4,n,2,1) = (Product_{i=0..4}(i*n+2) - Product_{i=0..4}(-i*n-1))/(4*n+3), n >= 0. - Hong-Chang Wang, Jun 14 2016
From Colin Barker, Jun 22 2016: (Start)
a(n) = 11+42*n+49*n^2+18*n^3.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3.
G.f.: (11+76*x+21*x^2) / (1-x)^4. (End)
E.g.f.: exp(x)*(11 + 109*x + 103*x^2 + 18*x^3). - Stefano Spezia, Aug 07 2024
Showing 1-1 of 1 results.