cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274131 Irregular triangle T(n,m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact time dependence.

Original entry on oeis.org

6, 48, 96, 960, 160, 1536, 5760, 30720, 725760, 1935360, 34560, 165888, 23224320, 1161216, 4644864, 92897280, 4644864, 5806080, 663552, 21233664, 464486400, 3715891200, 232243200, 619315200, 11354112, 81749606400, 185794560, 2123366400, 26542080, 70778880
Offset: 1

Views

Author

Bradley Klee, Jun 10 2016

Keywords

Comments

Irregular triangle read by rows (see example). The row length sequence is 2*n = A005843(n), n >= 1.
The numerator triangle is A274130.
Comments of A274130 give a definition of the fraction triangle, which determines to arbitrary precision the time dependence for the time-independent solution (cf. A273506, A273507) of the plane pendulum's equations of motion. For more details see "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n\m  1      2      3          4       5       6
------------------------------------------------------
1  | 6     48
2  | 96    960    160      1536
3  | 5760  30720  725760   1935360  34560   165888
------------------------------------------------------
row 4: 23224320, 1161216, 4644864, 92897280, 4644864, 5806080, 663552, 21233664,
row 5: 464486400, 3715891200, 232243200, 619315200, 11354112, 81749606400, 185794560, 2123366400, 26542080, 70778880.
		

Crossrefs

Numerators: A274130. Phase Space Trajectory: A273506, A273507. Time Dependence: A274076, A274078. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
    t[n_] := Expand[ReplaceAll[Q TrigReduce[dt[n]], Cos[x_ Q] :> (1/x/Q) Sin[x Q]]]
    tCoefficients[n_] := With[{tn = t[n]},Function[{a}, Coefficient[Coefficient[tn, k^a], Sin[2 # Q] ] & /@ Range[2 a]] /@ Range[n]]
    Flatten[Denominator[-tCoefficients[10]]]