A274134 Primes p such that both ror(p) and rol(p) are also primes, where ror(x)=A038572(x) is x rotated one binary place to the right, rol(x)=A006257(x) is x rotated one binary place to the left.
3, 7, 11, 31, 43, 67, 79, 127, 131, 139, 167, 191, 211, 223, 227, 307, 331, 367, 487, 523, 631, 691, 743, 751, 883, 971, 1039, 1087, 1399, 2063, 2083, 2143, 2179, 2239, 2267, 2287, 2347, 2411, 2423, 2503, 2531, 2543, 2591, 2687, 2731, 2803, 2819, 2927, 2939, 2963
Offset: 1
Programs
-
Mathematica
Select[Prime@ Range@ 430, And[PrimeQ@ FromDigits[RotateLeft@ #, 2], PrimeQ@ FromDigits[RotateRight@ #, 2]] &@ IntegerDigits[#, 2] &] (* Michael De Vlieger, Jun 22 2016 *)
-
Python
from sympy import isprime for n in range(3, 10000, 2): if not isprime(n): continue BL = len(bin(n))-2 x = (n>>1) + ((n&1) << (BL-1)) # A038572(n) if not isprime(x): continue y = (n*2) - (1<
A006257(n) for n>0 if not isprime(y): continue print(str(n), end=', ')
Comments