cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274134 Primes p such that both ror(p) and rol(p) are also primes, where ror(x)=A038572(x) is x rotated one binary place to the right, rol(x)=A006257(x) is x rotated one binary place to the left.

Original entry on oeis.org

3, 7, 11, 31, 43, 67, 79, 127, 131, 139, 167, 191, 211, 223, 227, 307, 331, 367, 487, 523, 631, 691, 743, 751, 883, 971, 1039, 1087, 1399, 2063, 2083, 2143, 2179, 2239, 2267, 2287, 2347, 2411, 2423, 2503, 2531, 2543, 2591, 2687, 2731, 2803, 2819, 2927, 2939, 2963
Offset: 1

Views

Author

Alex Ratushnyak, Jun 10 2016

Keywords

Comments

a(n) mod 4 = 3.

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range@ 430, And[PrimeQ@ FromDigits[RotateLeft@ #, 2], PrimeQ@ FromDigits[RotateRight@ #, 2]] &@ IntegerDigits[#, 2] &] (* Michael De Vlieger, Jun 22 2016 *)
  • Python
    from sympy import isprime
    for n in range(3, 10000, 2):
        if not isprime(n): continue
        BL = len(bin(n))-2
        x = (n>>1) + ((n&1) << (BL-1))   # A038572(n)
        if not isprime(x): continue
        y = (n*2) - (1<A006257(n)  for n>0
        if not isprime(y): continue
        print(str(n), end=', ')