A274143 Number of integers in n-th generation of tree T(1/3) defined in Comments.
1, 1, 1, 1, 2, 2, 2, 4, 4, 5, 8, 9, 12, 16, 20, 26, 34, 44, 57, 74, 97, 125, 162, 212, 272, 356, 462, 597, 780, 1010, 1311, 1706, 2210, 2873, 3732, 4841, 6294, 8168, 10608, 13781, 17886, 23237, 30172, 39177, 50891, 66072, 85813, 111446, 144706, 187947, 244059, 316937, 411618, 534503, 694153, 901461
Offset: 0
Keywords
Examples
For r = 1/3, we have g(3) = {3,2r,r+1, r^2}, in which only 3 is an integer, so that a(3) = 1.
Links
- Kenny Lau, Table of n, a(n) for n = 0..8805
Crossrefs
Cf. A274142.
Programs
-
Maple
A274143 := proc(r) local gs,n,gs2,el,a ; gs := [2,r] ; for n from 3 do gs2 := [] ; for el in gs do gs2 := [op(gs2),el+1,r*el] ; end do: gs := gs2 ; a := 0 ; for el in gs do if type(el,'integer') then a := a+1 : end if; end do: print(n,a) ; end do: end proc: A274143(1/3) ; # R. J. Mathar, Jun 17 2016
-
Mathematica
z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]]; u = Table[t[[k]] /. x -> 1/3, {k, 1, z}]; Table[Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}]
Extensions
More terms from Kenny Lau, Jul 04 2016
Comments