A274147 Number of integers in n-th generation of tree T(-1/2) defined in Comments.
1, 1, 1, 2, 2, 4, 6, 9, 13, 20, 31, 48, 70, 108, 165, 250, 379, 575, 875, 1332, 2017, 3066, 4661, 7076, 10751, 16328, 24801, 37684, 57229, 86931, 132062, 200588, 304701, 462844, 703043, 1067955, 1622207, 2464117, 3743047, 5685655, 8636525, 13118942, 19927624, 30270167, 45980452, 69844296, 106093768
Offset: 0
Keywords
Examples
For r = -1/2, we have g(3) = {3,2r,r+1, r^2}, in which the number of integers is a(3) = 2.
Links
- Kenny Lau, Table of n, a(n) for n = 0..5503
Crossrefs
Cf. A274142.
Programs
-
Maple
A274147 := proc(r) local gs,n,gs2,el,a ; gs := [2,r] ; for n from 3 do gs2 := [] ; for el in gs do gs2 := [op(gs2),el+1,r*el] ; end do: gs := gs2 ; a := 0 ; for el in gs do if type(el,'integer') then a := a+1 : end if; end do: print(n,a) ; end do: end proc: A274147(-1/2) ; # R. J. Mathar, Jun 16 2016
-
Mathematica
z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]]; u = Table[t[[k]] /. x -> -1/2, {k, 1, z}]; Table[ Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}] (*A274147*)
Extensions
More terms from Kenny Lau, Jul 02 2016
Comments