A274199 Limiting reverse row of the array A274190.
1, 1, 2, 3, 5, 8, 12, 19, 29, 44, 67, 101, 152, 228, 342, 511, 763, 1138, 1695, 2523, 3752, 5578, 8287, 12307, 18272, 27119, 40241, 59700, 88556, 131340, 194772, 288815, 428229, 634900, 941263, 1395397, 2068560, 3066372, 4545387, 6737633, 9987026, 14803303
Offset: 0
Examples
Row (g(14,k)): 1, 51, 73, 69, 55, 40, 28, 19, 12, 8, 5, 3, 2, 1, 1; the reversal is 1 1 2 3 5 8 12 19 28 ..., which agrees with A274199 up to 19.
Links
- Daniel Gabric and Jeffrey Shallit, Smallest and Largest Block Palindrome Factorizations, arXiv:2302.13147 [math.CO], 2023.
Crossrefs
Programs
-
Mathematica
g[n_, 0] = g[n, 0] = 1; g[n_, k_] := g[n, k] = If[k > n, 0, g[n - 1, k - 1] + g[n - 1, 2 k]]; z = 300; u = Reverse[Table[g[z, k], {k, 0, z}]]; z = 301; v = Reverse[Table[g[z, k], {k, 0, z}]]; w = Join[{1}, Intersection[u, v]] (* A274199 *) Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]<2*#[[i-1]],{i,2,Length[#]}]&]],{n,15}] (* Gus Wiseman, Mar 12 2021 *)
Comments