A274205 Numbers such that the sum of divisors is twice the sum of the exponential divisors.
6, 24, 54, 216, 1638, 6552, 14256, 55860, 80262, 276822, 321048, 502740, 1107288, 1396500, 1724976, 12568500, 13564278, 20165460, 54257112, 168836850, 181489140, 504136500, 675347400, 4537228500, 28533427650, 60950102850, 114133710600, 162252212850, 243800411400, 649008851400, 734916514878
Offset: 1
Keywords
Examples
Divisors of 6 are 1, 2, 3 and 6 which sum to 12. The only exponential divisor is 6. Finally 12 / 6 = 2. Divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24 which sum to 60. Exponential divisors are 6, 24 and their sum is 30. Finally 60 / 30 = 2.
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,c,d,j,k,n,ok; for n from 2 to q do a:=ifactors(n)[2]; b:=sort([op(divisors(n))]); c:=0; for k from 2 to nops(b) do d:=ifactors(b[k])[2]; if nops(d)=nops(a) then ok:=1; for j from 1 to nops(d) do if not type(a[j][2]/d[j][2],integer) then ok:=0; break; fi; od; if ok=1 then c:=c+b[k]; fi; fi; od; if sigma(n)=2*c then print(n); fi; od; end: P(10^9);
-
Mathematica
Select[Range[10^6], 2 Times @@ Map[Sum[First[#]^d, {d, Divisors@ Last@ #}] &, FactorInteger@ #] == DivisorSigma[1, #] &] (* Michael De Vlieger, Jun 16 2016 *)
Extensions
a(16)-a(31) from Giovanni Resta, Jun 15 2016
Comments