A274206 a(n) = the last nonzero digit of n followed by all the trailing zeros of n.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 40, 1, 2, 3, 4, 5, 6, 7, 8, 9, 50, 1, 2, 3, 4, 5, 6, 7, 8, 9, 60, 1, 2, 3, 4, 5, 6, 7, 8, 9, 70, 1, 2, 3, 4, 5, 6, 7, 8, 9, 80
Offset: 1
Examples
a(1) = 1 because when 1 is added to 1 - 1 = 0, the units digit changes so the units digit of 1 is shown. a(110) = 10 because when 1 is added to 109, the tens digit and the units digit change, so the last two digits of 110 are shown. a(1000) = 1000 because when 1 is added to 999, all the digits change so they are all shown.
Links
- A. D. Skovgaard, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= n -> n mod 10^(1+min(padic:-ordp(n,2), padic:-ordp(n,5))): map(f, [$1..100]); # Robert Israel, Aug 08 2016
-
Mathematica
Table[FromDigits@ Join[{Last@ #}, Table[0, {Log10[n/FromDigits@ #]}]] &@ Select[IntegerDigits@ n, # != 0 &], {n, 120}] (* Michael De Vlieger, Jun 29 2016 *)
-
PARI
a(n) = n%10^(valuation(n,10)+1); \\ David A. Corneth, Jun 29 2016
Formula
a(n) = n mod 10 if n is not a multiple of 10.
From Robert Israel, Aug 08 2016: (Start)
a(10*n) = 10*a(n).
a(10*n+k) = k for 1 <= k <= 9.
G.f. g(x) satisfies g(x) = (x+2x^2+...+9x^9)/(1-x^10) + 10 g(x^10). (End)
Comments