cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A075126 Number of bargraphs of site-perimeter n.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 2, 4, 8, 14, 26, 52, 97, 193, 377, 752, 1500, 3022, 6107, 12429, 25365, 52042, 107090, 221235, 458316, 952439, 1984262, 4144601, 8676232, 18202536, 38263456, 80585694, 170013976, 359277183, 760400787, 1611721413, 3420839200, 7270098883
Offset: 1

Views

Author

Andrew Rechnitzer (a.rechnitzer(AT)ms.unimelb.edu.au), Sep 09 2002

Keywords

Crossrefs

Cf. A075125.
Row sums of A274207.

Programs

  • Maple
    b:= proc(n, y, t, w) option remember; `if`(n<0, 0, `if`(n=0, (1-t),
         `if`(t<0, 0, b(n-`if`(w>0 or t=0, 1, 2), y+1, 1, max(0, w-1)))+
         `if`(t>0 or y<2, 0, b(n, y-1, -1, `if`(t=0, 1, w+1)))+
         `if`(y<1, 0, b(n-`if`(t<0, 1, 2), y, 0, `if`(t<0, w, 0)))))
        end:
    a:= n-> b(n, 0, 1, 0):
    seq(a(n), n=1..45);  # Alois P. Heinz, Jun 05 2016
  • Mathematica
    b[n_, y_, t_, w_] := b[n, y, t, w] = If[n<0, 0, If[n==0, 1-t, If[t<0, 0, b[n - If[w>0 || t==0, 1, 2], y+1, 1, Max[0, w-1]]] + If[t>0 || y<2, 0, b[n, y-1, -1, If[t==0, 1, w+1]]] + If[y<1, 0, b[n - If[t<0, 1, 2], y, 0, If[t<0, w, 0]]]]]; a[n_] := b[n, 0, 1, 0]; Table[a[n], {n, 1, 45}] (* Jean-François Alcover, Nov 28 2016 after Alois P. Heinz *)

Formula

The generating function is known in closed form. Closed, but complicated. It is proved to be non-D-finite.

Extensions

Offset corrected by Alois P. Heinz, Jun 04 2016
a(31)-a(38) from Alois P. Heinz, Jun 05 2016

A274208 Sum of the areas of all bargraphs of site-perimeter n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 4, 6, 14, 36, 77, 168, 395, 851, 1921, 4254, 9461, 20991, 46619, 103360, 229461, 508731, 1128706, 2503028, 5552197, 12313707, 27313442, 60581866, 134384684, 298097515, 661300177, 1467072716, 3254847737, 7221496901, 16023112774, 35553756328
Offset: 0

Views

Author

Alois P. Heinz, Jun 13 2016

Keywords

Comments

A bargraph is a polyomino whose bottom is a segment of the nonnegative x-axis and whose upper part is a lattice path starting at (0,0) and ending with its first return to the x-axis using steps U=(0,1), D=(0,-1) and H=(1,0), where UD and DU are not allowed.
The site-perimeter of a polyomino is the number of exterior cells having a common edge with at least one polyomino cell.
a(n)^(1/n) tends to 2.222118... . - Vaclav Kotesovec, Jun 26 2016

Crossrefs

Formula

a(n) = Sum_{k=floor((n-1)/2)..floor(((n-1)^2+3)/12)} k * A274207(n,k).

A274217 Sum of the site-perimeters of all bargraphs of area n.

Original entry on oeis.org

0, 4, 12, 30, 72, 166, 376, 837, 1844, 4025, 8723, 18789, 40263, 85892, 182515, 386488, 815890, 1717604, 3606854, 7556995, 15800562, 32974263, 68694801, 142882147, 296749381, 615468930, 1274878193, 2637637046, 5451035408, 11253593442, 23210232132, 47826554753
Offset: 0

Views

Author

Alois P. Heinz, Jun 14 2016

Keywords

Comments

A bargraph is a polyomino whose bottom is a segment of the nonnegative x-axis and whose upper part is a lattice path starting at (0,0) and ending with its first return to the x-axis using steps U=(0,1), D=(0,-1) and H=(1,0), where UD and DU are not allowed.
The site-perimeter of a polyomino is the number of exterior cells having a common edge with at least one polyomino cell.

Crossrefs

Formula

a(n) = Sum_{k>=4} k * A274207(k,n).
Showing 1-3 of 3 results.