cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274218 Numbers such that the sum of their digits is equal to the sum of digits of their aliquot parts.

Original entry on oeis.org

6, 33, 87, 249, 303, 519, 573, 681, 843, 951, 1059, 1329, 1383, 1923, 1977, 2463, 2733, 2787, 2949, 3057, 3273, 3327, 3543, 3651, 3867, 3921, 4083, 4353, 4677, 5163, 5433, 5703, 5919, 6081, 6243, 6297, 6621, 6891, 7053, 7323, 7377, 7647, 7971, 8079, 8133, 8187
Offset: 1

Views

Author

Paolo P. Lava, Jun 14 2016

Keywords

Examples

			Sum of digits of 8884 is 8 + 8 + 8 + 4 = 28. Its aliquot parts are 1, 2, 4, 2221, 4442 and their sum is 1 + 2 + 4 + 2 + 2 + 2 + 1 + 4 + 4 + 4 + 2 = 28.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do
    y:=y+(x mod 10); x:=trunc(x/10); od; y; end:
    P:=proc(q) local a,k,n; for n from 1 to q do a:=sort([op(divisors(n))]);
    if T(n)=add(T(a[k]),k=1..nops(a)-1) then print(n); fi; od; end: P(10^6);
  • Mathematica
    Select[Range[10^4], Total@ IntegerDigits@ # == Total[Total@ IntegerDigits@ # & /@ Most@ Divisors@ #] &] (* Michael De Vlieger, Jun 14 2016 *)