A274218 Numbers such that the sum of their digits is equal to the sum of digits of their aliquot parts.
6, 33, 87, 249, 303, 519, 573, 681, 843, 951, 1059, 1329, 1383, 1923, 1977, 2463, 2733, 2787, 2949, 3057, 3273, 3327, 3543, 3651, 3867, 3921, 4083, 4353, 4677, 5163, 5433, 5703, 5919, 6081, 6243, 6297, 6621, 6891, 7053, 7323, 7377, 7647, 7971, 8079, 8133, 8187
Offset: 1
Examples
Sum of digits of 8884 is 8 + 8 + 8 + 4 = 28. Its aliquot parts are 1, 2, 4, 2221, 4442 and their sum is 1 + 2 + 4 + 2 + 2 + 2 + 1 + 4 + 4 + 4 + 2 = 28.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do y:=y+(x mod 10); x:=trunc(x/10); od; y; end: P:=proc(q) local a,k,n; for n from 1 to q do a:=sort([op(divisors(n))]); if T(n)=add(T(a[k]),k=1..nops(a)-1) then print(n); fi; od; end: P(10^6);
-
Mathematica
Select[Range[10^4], Total@ IntegerDigits@ # == Total[Total@ IntegerDigits@ # & /@ Most@ Divisors@ #] &] (* Michael De Vlieger, Jun 14 2016 *)