A274233 Number of partitions of n*(n-1)/2 into at most three parts.
1, 1, 3, 7, 14, 27, 48, 80, 127, 192, 280, 397, 547, 736, 972, 1261, 1610, 2028, 2523, 3104, 3781, 4563, 5461, 6487, 7651, 8965, 10443, 12097, 13940, 15987, 18252, 20750, 23497, 26508, 29800, 33391, 37297, 41536, 46128, 51091, 56444, 62208, 68403, 75050
Offset: 1
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
Programs
-
PARI
\\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)*(1-x^3)). b(n) = round(real((47+9*(-1)^n + 8*exp(-2/3*I*n*Pi) + 8*exp((2*I*n*Pi)/3) + 36*n+6*n^2)/72)) vector(50, n, b(n*(n-1)/2))
Formula
Coefficient of x^(n*(n-1)/2) in 1/((1-x)*(1-x^2)*(1-x^3)).
Empirical g.f.: (1-3*x+6*x^2-7*x^3+9*x^4-7*x^5+6*x^6-3*x^7+x^8) / ((1-x)^5*(1+x^2)*(1+x+x^2)).