A274238 Numbers k such that (26*10^k - 119)/3 is prime.
1, 2, 3, 4, 6, 22, 25, 29, 59, 89, 221, 453, 535, 1708, 2242, 2413, 3581, 4234, 4848, 5380, 6548, 8654, 11035, 17308, 27634, 28807, 35481, 79678, 80875, 114658, 230394
Offset: 1
Examples
3 is in this sequence because (26*10^3 - 119)/3 = 8627 is prime. Initial terms and associated primes: a(1) = 1, 47; a(2) = 2, 827; a(3) = 3, 8627; a(4) = 4, 86627; a(5) = 6, 8666627, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 86w27.
Programs
-
Magma
[n: n in [1..500] |IsPrime((26*10^n-119) div 3)]; // Vincenzo Librandi, Jul 07 2016
-
Mathematica
Select[Range[0, 100000], PrimeQ[(26*10^# - 119)/3] &]
-
PARI
lista(nn) = for(n=1, nn, if(ispseudoprime((26*10^n-119)/3), print1(n, ", "))); \\ Altug Alkan, Jul 08 2016
Extensions
a(30)-a(31) from Robert Price, Jul 12 2023
Comments