A274262 Number of positive integers possessing exactly n Fibonacci representations (A000121).
1, 2, 4, 6, 8, 12, 12, 18, 20, 24, 20, 44, 24, 36, 48, 54, 32, 76, 36, 88, 72, 60, 44, 156, 72, 72, 100, 132, 56, 208, 60, 162, 120, 96, 144, 316, 72, 108, 144, 312, 80, 312, 84, 220, 304, 132, 92, 540, 156, 280, 192, 264, 104, 460, 240, 468, 216, 168, 116, 116, 120, 180, 456, 486, 288, 520, 132, 352, 264, 624, 140
Offset: 1
Keywords
Examples
Let phi denote the Euler totient. The integer p^2*q has 8 multiplicative compositions: (p^2*q), p^2*q, q*p^2, p*(p*q), (p*q)*p, q*p*p, p*q*p, p*p*q from which a(p^2*q) = 2*(3*phi(p^2)*phi(q) + 5*phi(p)^2*phi(q)) follows immediately.
Links
- Zai-Qiao Bai and Steven R. Finch, Fibonacci and Lucas Representations, Fibonacci Quart. 54 (2016), no. 4, 319-326.
Formula
Let p, q, r be distinct primes and k be a positive integer.
If n = p^k then a(n) = 2*(p-1)*(2*p-1)^(k-1).
If n = p*q then a(n) = 6*(p-1)*(q-1).
If n = p^2*q then a(n) = 2*(p-1)*(8*p-5)*(q-1).
If n = p^3*q then a(n) = 2*(p-1)*(2*p-1)*(10*p-7)*(q-1).
If n = p^4*q then a(n) = 6*(p-1)*(2*p-1)^2*(4*p-3)*(q-1).
If n = p^2*q^2 then a(n) = 2*(p-1)*(q-1)*(26*p*q-18*p-18*q+13).
If n = p*q*r then a(n) = 26*(p-1)*(q-1)*(r-1).