cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274262 Number of positive integers possessing exactly n Fibonacci representations (A000121).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 12, 18, 20, 24, 20, 44, 24, 36, 48, 54, 32, 76, 36, 88, 72, 60, 44, 156, 72, 72, 100, 132, 56, 208, 60, 162, 120, 96, 144, 316, 72, 108, 144, 312, 80, 312, 84, 220, 304, 132, 92, 540, 156, 280, 192, 264, 104, 460, 240, 468, 216, 168, 116, 116, 120, 180, 456, 486, 288, 520, 132, 352, 264, 624, 140
Offset: 1

Views

Author

Steven Finch, Jun 16 2016

Keywords

Examples

			Let phi denote the Euler totient.
The integer p^2*q has 8 multiplicative compositions:
  (p^2*q), p^2*q, q*p^2, p*(p*q), (p*q)*p, q*p*p, p*q*p, p*p*q
from which
  a(p^2*q) = 2*(3*phi(p^2)*phi(q) + 5*phi(p)^2*phi(q))
follows immediately.
		

Crossrefs

Formula

Let p, q, r be distinct primes and k be a positive integer.
If n = p^k then a(n) = 2*(p-1)*(2*p-1)^(k-1).
If n = p*q then a(n) = 6*(p-1)*(q-1).
If n = p^2*q then a(n) = 2*(p-1)*(8*p-5)*(q-1).
If n = p^3*q then a(n) = 2*(p-1)*(2*p-1)*(10*p-7)*(q-1).
If n = p^4*q then a(n) = 6*(p-1)*(2*p-1)^2*(4*p-3)*(q-1).
If n = p^2*q^2 then a(n) = 2*(p-1)*(q-1)*(26*p*q-18*p-18*q+13).
If n = p*q*r then a(n) = 26*(p-1)*(q-1)*(r-1).