A274289 Number of equivalence classes of Dyck paths of semilength n for the string udu.
1, 1, 2, 4, 9, 22, 54, 134, 335, 843, 2132, 5409, 13761, 35088, 89638, 229361, 587678, 1507586, 3871589, 9952087, 25604573, 65927447, 169875992, 438016016, 1130103976, 2917412699, 7535482753, 19473430909, 50347508572, 130228143004, 336985674038
Offset: 0
Keywords
Links
- K. Manes, A. Sapounakis, I. Tasoulas, P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015.
Programs
-
Maple
G := 1 ; T := 1 ; for t from 1 to 40 do G := x*(1+G)+x^2*(1+x*G)*(1+x*(1+x*G))*G ; G := taylor(G,x=0,t+1) ; G := convert(G,polynom) ; T := (-x^2-x^3*T^3-x^2*T^2)/(x-1) ; T := taylor(T,x=0,t+1) ; T := convert(T,polynom) ; F := (x*(1-x)^2*(1+G+x*G)+x^5*(1+x*G)*G^2)/(1-x)/((1-x)^2+(x-2)*x^2*G) -x^4*(1-x+x^3)*(1+x*G)*G*T/(1-x)^2/(1-x+x^3-x*T) ; F := taylor(F,x=0,t+1) ; F := convert(F,polynom) ; for i from 0 to t do printf("%d,",coeff(F,x,i)) ; od; print(); end do: # R. J. Mathar, Jun 21 2016
-
Mathematica
G = 1; T = 1; For[ t = 1 , t <= 40, t++, G = x*(1 + G) + x^2*(1 + x*G)*(1 + x*(1 + x*G))*G + O[x]^(t+1) // Normal; T = (-x^2 - x^3*T^3 - x^2*T^2)/(x - 1) + O[x]^(t+1) // Normal; F = 1 + (x*(1 - x)^2*(1 + G + x*G) + x^5*(1 + x*G)*G^2)/(1 - x)/((1 - x)^2 + (x - 2)*x^2*G) - x^4*(1 - x + x^3)*(1 + x*G)*G*T/(1 - x)^2/(1 - x + x^3 - x*T) + O[x]^(t+1) // Normal; ]; CoefficientList[F, x] (* Jean-François Alcover, Jul 27 2018, after R. J. Mathar *)
Extensions
a(0)=1 prepended by Alois P. Heinz, Jul 27 2018