cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274289 Number of equivalence classes of Dyck paths of semilength n for the string udu.

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 54, 134, 335, 843, 2132, 5409, 13761, 35088, 89638, 229361, 587678, 1507586, 3871589, 9952087, 25604573, 65927447, 169875992, 438016016, 1130103976, 2917412699, 7535482753, 19473430909, 50347508572, 130228143004, 336985674038
Offset: 0

Views

Author

N. J. A. Sloane, Jun 17 2016

Keywords

Crossrefs

Programs

  • Maple
    G := 1 ;
    T := 1 ;
    for t from 1 to 40 do
        G := x*(1+G)+x^2*(1+x*G)*(1+x*(1+x*G))*G ;
        G := taylor(G,x=0,t+1) ;
        G := convert(G,polynom) ;
        T := (-x^2-x^3*T^3-x^2*T^2)/(x-1) ;
        T := taylor(T,x=0,t+1) ;
        T := convert(T,polynom) ;
        F := (x*(1-x)^2*(1+G+x*G)+x^5*(1+x*G)*G^2)/(1-x)/((1-x)^2+(x-2)*x^2*G)
                   -x^4*(1-x+x^3)*(1+x*G)*G*T/(1-x)^2/(1-x+x^3-x*T) ;
        F := taylor(F,x=0,t+1) ;
        F := convert(F,polynom) ;
        for i from 0 to t do
            printf("%d,",coeff(F,x,i)) ;
        od;
        print();
    end do: # R. J. Mathar, Jun 21 2016
  • Mathematica
    G = 1; T = 1;
    For[ t = 1 , t <= 40, t++,
    G = x*(1 + G) + x^2*(1 + x*G)*(1 + x*(1 + x*G))*G + O[x]^(t+1) // Normal;
    T = (-x^2 - x^3*T^3 - x^2*T^2)/(x - 1) + O[x]^(t+1) // Normal;
    F = 1 + (x*(1 - x)^2*(1 + G + x*G) + x^5*(1 + x*G)*G^2)/(1 - x)/((1 - x)^2 + (x - 2)*x^2*G) - x^4*(1 - x + x^3)*(1 + x*G)*G*T/(1 - x)^2/(1 - x + x^3 - x*T) + O[x]^(t+1) // Normal;
    ];
    CoefficientList[F, x] (* Jean-François Alcover, Jul 27 2018, after R. J. Mathar *)

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 27 2018