A274291 The width of the lattice of Dyck paths of length 2n ordered by the relation that one Dyck path lies above another one.
1, 1, 1, 2, 3, 7, 17, 44, 118, 338, 1003, 3039, 9466, 30009, 96757, 316429, 1047683, 3511473, 11876457, 40537388, 139490014, 483393651, 1686007017, 5917253784, 20879801881, 74038098051, 263793988890, 943928231920, 3390975927021, 12227214763162, 44242758258306
Offset: 0
Keywords
Examples
For n=4 there are 14 Dyck paths, and 1,3,3,3,2,1,1 of them have area 0,1,2,3,4,5,6, respectively, where the area is normalized to the range 0,...,n(n-1)/2. These Dyck paths are UDUDUDUD (area=0), UUDDUDUD, UDUUDDUD, UDUDUUDD (area=1), UUDUDDUD, UDUUDUDD, UUDDUUDD (area=2), UUUDDDUD, UUDUDUDD, UDUUUDDD (area=3), UUUDDUDD, UUDUUDDD (area=4), UUUDUDDD (area=5), UUUUDDDD (area=6). The maximum among the numbers 1,3,3,3,2,1,1 is 3, so a(4)=3.
References
- Winston, Kenneth J., and Daniel J. Kleitman. "On the asymptotic number of tournament score sequences." Journal of Combinatorial Theory, Series A 35.2 (1983): 208-230. See Table 1.
Links
- Torsten Muetze, Table of n, a(n) for n = 0..300
- Paolo Boldi and Sebastiano Vigna, On the Lattice of Antichains of Finite Intervals, Order (2016), 1-25.
- Paolo Boldi, Sebastiano Vigna, On the lattice of antichains of finite intervals, arXiv preprint arXiv:1510.03675 [math.CO], 2015-2016.
Extensions
a(0)=1 inserted by Sebastiano Vigna, Dec 20 2017
New name and more terms from Torsten Muetze, Nov 28 2018
Comments