A274327 Expansion of Product_{n>=1} (1 - x^(4*n))/(1 - x^n)^4 in powers of x.
1, 4, 14, 40, 104, 248, 560, 1200, 2474, 4924, 9520, 17928, 33008, 59528, 105408, 183536, 314744, 532208, 888382, 1465208, 2389808, 3857456, 6166096, 9766576, 15336816, 23888844, 36924656, 56659296, 86341664, 130710104, 196640576, 294059872, 437232746, 646561792
Offset: 0
Keywords
Examples
G.f.: 1 + 4*x + 14*x^2 + 40*x^3 + 104*x^4 + 248*x^5 + 560*x^6 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
Crossrefs
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1 - x^(4*k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *) (QPochhammer[x^4, x^4]/QPochhammer[x, x]^4 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
-
PARI
first(n)=my(x='x);Vec(prod(k=1,n,(1-x^(4*k))/(1-x^k)^4,1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016
Formula
G.f.: Product_{n>=1} (1 - x^(4*n))/(1 - x^n)^4.
a(n) ~ 5*exp(Pi*sqrt(5*n/2)) / (2^(13/2) * n^(3/2)). - Vaclav Kotesovec, Nov 10 2016
G.f.: (x^4; x^4)inf/((x; x)_inf)^4, where (a; q)_inf is the q-Pochhammer symbol. - _Vladimir Reshetnikov, Nov 20 2016
a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A285895(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017