A274343 Irregular triangle read by rows giving the denominators of the coefficients of the Eisenstein series G_{2*n} multiplied by 2*n-1, for n >= 2. Also Laurent coefficients of Weierstrass's P function.
1, 1, 3, 11, 13, 39, 33, 2431, 663, 247, 2717, 80223, 1989, 1062347, 3187041, 16055, 6605027, 77571, 11685817, 1062347, 2002524095, 4405553009, 247, 2717, 497705, 155409680283, 11559397707, 1123416017295, 74894401153, 114727509, 5643476995, 409716429837, 10158258591, 909705199, 233400836858808047, 190964321066297493, 18394643943, 34825896536145, 229850917138557, 17096349208653, 357856262339147, 24291640943843637507, 602272089516784401, 174041631153
Offset: 2
Examples
The irregular triangle a(n, m) begins: n\m 1 2 3 2: 1 3: 1 4: 3 5: 11 6: 13 39 7: 33 8: 2431 663 9: 247 2717 10: 8022 1989 11: 1062347 3187041 12: 16055 6605027 77571 13: 11685817 1062347 14: 2002524095 4405553009 249951 15: 497705 155409680283 11559397707 16: 1123416017295 74894401153 114727509 17: 5643476995 409716429837 10158258591 ... row n = 18: 909705199 233400836858808047 190964321066297493 18394643943, row n = 19: 34825896536145 229850917138557 17096349208653, row n = 20: 357856262339147 24291640943843637507 602272089516784401 174041631153. ... For the rationals r(n), n = 2..20, see A274342.
Crossrefs
Cf. A274342.
Comments