cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274345 Numerators of coefficients in the expansion of (log(q) - log(k^2/16))/(8*k^2/16) in powers of k^2/16, where q is the Jacobi nome and k^2 the parameter of elliptic functions.

Original entry on oeis.org

1, 13, 184, 2701, 40456, 306860, 9391936, 144644749, 2238445480, 17386135604, 541801226176, 2115779182678, 132472258939840, 1038616414507808, 32621327116946944, 512963507737401997, 8075477240446327528, 63629398756188443588, 2007225253307641799872, 7921211894405933627674, 500517296244244008379456
Offset: 0

Views

Author

Wolfdieter Lang, Jun 30 2016

Keywords

Comments

For the denominators see A274346.
The rationals r(n) = a(n)/A274346(n) are given by A227503(n+1)/(n+1) reduced to lowest terms. See A227503 for details, references and links.

Examples

			The first rationals r(n) = a(n)/A274346(n) are: 1/1, 13/2, 184/3, 2701/4, 40456/5, 306860/3, 9391936/7, 144644749/8, 2238445480/9, 17386135604/5, 541801226176/11, 2115779182678/3, 132472258939840/13, 1038616414507808/7, 32621327116946944/15, ...
		

Crossrefs

Programs

  • Mathematica
    (* See the program for r(n-1), n >= 1, in A274346. *)

Formula

a(n) = numerator(A227503(n+1)/(n+1)), n >= 0.
(log(q) - log(k^2/16))/(8*k^2/16) = Sum_{n >= 0} (a(n)/A274346(n))*(k^2/16)^n.