A227503 q = x * exp( 8 * (Sum_{k>0} a(k) * x^k / k)) where x = m/16, q is the elliptic nome and m = k^2 is the parameter.
1, 13, 184, 2701, 40456, 613720, 9391936, 144644749, 2238445480, 34772271208, 541801226176, 8463116730712, 132472258939840, 2077232829015616, 32621327116946944, 512963507737401997, 8075477240446327528, 127258797512376887176, 2007225253307641799872
Offset: 1
Keywords
Examples
G.f. = x + 13*x^2 + 184*x^3 + 2701*x^4 + 40456*x^5 + 613720*x^6 + 9391936*x^7 + ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..800
- A. Kneser, Neue Untersuchung einer Reihe aus der Theorie der elliptischen Funktionen, J. reine u. angew. Math. 157, 1927, 209 - 218.
- R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Dritter Teil, Springer-Verlag, 2012., p. 2, eq. (5).
Programs
-
Mathematica
a[ n_] := If[ n < 0, 0, n SeriesCoefficient[ Log[ EllipticNomeQ[ 16 x] / x] / 8, {x, 0, n}]];
-
PARI
{a(n) = local(A); if( n<1, 0, A = x * O(x^n); n * polcoeff( log( serreverse( x * (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^8 ) / x) / 8, n))};
Comments