cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A227503 q = x * exp( 8 * (Sum_{k>0} a(k) * x^k / k)) where x = m/16, q is the elliptic nome and m = k^2 is the parameter.

Original entry on oeis.org

1, 13, 184, 2701, 40456, 613720, 9391936, 144644749, 2238445480, 34772271208, 541801226176, 8463116730712, 132472258939840, 2077232829015616, 32621327116946944, 512963507737401997, 8075477240446327528, 127258797512376887176, 2007225253307641799872
Offset: 1

Views

Author

Michael Somos, Jul 13 2013

Keywords

Comments

The Fricke reference has equation Pi i omega / 4 = log (sqrt(k) / 2) + 2 (sqrt(k) / 2)^4 + 13 (sqrt(k) / 2)^8 + 368/3 (sqrt(k) / 2)^12 + 2701/2 (sqrt(k) / 2)^16 + ... .
This can be written (with Pi i omega / 4 = log(q)/4) as (log(q) - log(k^2/16)) / (8*k^2/16) = Sum_{n >= 0} (a(n+1)/(n+1))*(k^2/16)^n. See also the Kneser reference, p. 216. Note that the rational coefficients a(n+1)/(n+1) are not reduced to lowest terms. For the reduced rational coefficients see A274345 / A274346. - Wolfdieter Lang, Jun 30 2016

Examples

			G.f. = x + 13*x^2 + 184*x^3 + 2701*x^4 + 40456*x^5 + 613720*x^6 + 9391936*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, n SeriesCoefficient[ Log[ EllipticNomeQ[ 16 x] / x] / 8, {x, 0, n}]];
  • PARI
    {a(n) = local(A); if( n<1, 0, A = x * O(x^n); n * polcoeff( log( serreverse( x * (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^8 ) / x) / 8, n))};

A274345 Numerators of coefficients in the expansion of (log(q) - log(k^2/16))/(8*k^2/16) in powers of k^2/16, where q is the Jacobi nome and k^2 the parameter of elliptic functions.

Original entry on oeis.org

1, 13, 184, 2701, 40456, 306860, 9391936, 144644749, 2238445480, 17386135604, 541801226176, 2115779182678, 132472258939840, 1038616414507808, 32621327116946944, 512963507737401997, 8075477240446327528, 63629398756188443588, 2007225253307641799872, 7921211894405933627674, 500517296244244008379456
Offset: 0

Views

Author

Wolfdieter Lang, Jun 30 2016

Keywords

Comments

For the denominators see A274346.
The rationals r(n) = a(n)/A274346(n) are given by A227503(n+1)/(n+1) reduced to lowest terms. See A227503 for details, references and links.

Examples

			The first rationals r(n) = a(n)/A274346(n) are: 1/1, 13/2, 184/3, 2701/4, 40456/5, 306860/3, 9391936/7, 144644749/8, 2238445480/9, 17386135604/5, 541801226176/11, 2115779182678/3, 132472258939840/13, 1038616414507808/7, 32621327116946944/15, ...
		

Crossrefs

Programs

  • Mathematica
    (* See the program for r(n-1), n >= 1, in A274346. *)

Formula

a(n) = numerator(A227503(n+1)/(n+1)), n >= 0.
(log(q) - log(k^2/16))/(8*k^2/16) = Sum_{n >= 0} (a(n)/A274346(n))*(k^2/16)^n.

A274344 Coefficients in the expansion of q^(1/2) in odd powers of k/4, where q is the Jacobi nome and k^2 the parameter of elliptic functions. Also coefficients in the expansion of q in odd powers of (1/4)*(1 - k') / (1 + k') with k'^2 the complementary parameter.

Original entry on oeis.org

1, 4, 34, 360, 4239, 53148, 694582, 9348664, 128625067, 1800131564, 25538105486, 366348201176, 5304067812296, 77394671803040, 1136872705730600, 16796605751564320, 249415741237963837
Offset: 1

Views

Author

Wolfdieter Lang, Jun 30 2016

Keywords

Comments

k' is the square root of the complementary parameter of elliptic functions. In the Abramowitz-Stegun (A-St) reference, p. 569, k'^2 is called m_1. The relation between k'^2 and k^2, the parameter (called m in A-St), is k'^2 = 1 - k^2.
The expansion of q in odd powers of (1/4)*(1 - k') / (1 + k') appears in the Kneser reference, p. 218, where it is attributed to L. Lindelöf. It is obtained from the expansion of sqrt(q) in odd powers of k/4, namely q^{1/2} = Sum_{n >= 0} a(n)*(k/4)^(2*n+1), which results from the expansion -Pi*K'/K = log(q) = log(k^2/16) + log(1 + Sum_{n>=1} A005797(n+1)*(k^2/16)^n) = log(k^2/16) + 8*(k^2/16) + 52*(k^2/16)^2 + ... (see A-St, p. 591, 17. 3.21, Kneser, p. 216, Fricke, eq. (4), p. 2, and A227505, A274345/A274346). The fact that a replacement of q by q^2 means a replacement of k by (1 - k')/(1 + k') is used (Landen transformation).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[EllipticNomeQ[16*x]/x], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 07 2019 *)

Formula

q^{1/2} = Sum_{n >= 0} a(n)*(k/4)^(2*n+1).
q = Sum_{n >= 0} a(n)*((1/4)*(1 - k')/(1 + k'))^(2*n+1).
Showing 1-3 of 3 results.