cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A274349 Products of two distinct Lucas numbers (2,3,4,7,11,18,...).

Original entry on oeis.org

6, 8, 12, 14, 21, 22, 28, 33, 36, 44, 54, 58, 72, 77, 87, 94, 116, 126, 141, 152, 188, 198, 203, 228, 246, 304, 319, 329, 369, 398, 492, 517, 522, 532, 597, 644, 796, 836, 846, 861, 966, 1042, 1288, 1353, 1363, 1368, 1393, 1563, 1686, 2084, 2189, 2204, 2214
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2016

Keywords

Examples

			6 = 2*3, 44 = 4*11.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # for terms <= N
    L:= gfun:-rectoproc({f(n)=f(n-1)+f(n-2),f(0)=2,f(1)=1},f(n),remember):
    S:= {}:
    for i from 2 do
      u:= L(i);
      if u > N then break fi;
      for j from 0 to i-1 do
        if j = 1 then next fi;
        v:= u*L(j);
        if v > N then break fi;
        S:= S union {v};
    od od:
    sort(convert(S,list)); # Robert Israel, Jan 01 2021
  • Mathematica
    z = 100; f[n_] := LucasL[n]; f[1] = 2 ;
    Take[Sort[Flatten[Table[f[u] f[v], {u, 1, z}, {v, 1, u - 1}]]], z]
    Take[Times@@@Subsets[Join[{2},LucasL[Range[2,20]]],{2}]//Union,60] (* Harvey P. Dale, Aug 13 2019 *)

A274374 Products of 2 distinct Fibonacci numbers and products of two distinct Lucas numbers (without 2), arranged in increasing order.

Original entry on oeis.org

0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 18, 21, 24, 26, 28, 29, 33, 34, 39, 40, 42, 44, 47, 54, 55, 63, 65, 68, 72, 76, 77, 87, 89, 102, 104, 105, 110, 116, 123, 126, 141, 144, 165, 168, 170, 178, 188, 198, 199, 203, 228, 233, 267, 272, 273, 275, 288
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2016

Keywords

Comments

Are 3 and 21 the only numbers that are a product of two distinct Fibonacci numbers and also a product of two distinct Lucas numbers?

Crossrefs

Programs

  • Mathematica
    z = 400; f[n_] := Fibonacci[n];
    s = Join[{0}, Take[Sort[Flatten[Table[f[m] f[n], {n, 2, z}, {m, 2, n - 1}]]], z]]
    g[n_] := LucasL[n]; t = Take[Sort[Flatten[Table[g[u] g[v], {u, 1, z}, {v, 1, u - 1}]]], z]
    Union[s, t]

A274353 Number of factors L(i) > 1 of A274280(n), where L = A000032 (Lucas numbers, 1,3,4,...)

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 3, 2, 2, 1, 2, 3, 2, 2, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 1, 2, 2, 3, 4, 3, 2, 3, 3, 2, 3, 2, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 3, 3, 2, 3, 3, 2, 2, 1, 2, 3, 2
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2016

Keywords

Examples

			The products of distinct Lucas numbers, arranged in increasing order, comprise A274280.  The list begins with 1, 3, 4, 7, 11, 12 = 3*4, so that a(6) = 2.
		

Crossrefs

Programs

  • Mathematica
    r[1] := 1; r[2] := 3; r[n_] := r[n] = r[n - 1] + r[n - 2];
    s = {1}; z = 40; f = Map[r, Range[z]]; Take[f, 10]
    Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}];
    infQ[n_] := MemberQ[f, n];
    a = Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[
    Rest[Subsets[Map[#[[1]] &, Select[Map[{#, infQ[#]} &,
    Divisors[s[[n]]]], #[[2]] && #[[1]] > 1 &]]]]], {n, 2, 200}];
    ans = Join[{{1}}, a]; Take[ans, 8]
    w = Map[Length, ans] (* A274353 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A274347 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A274348 *)
    (* Peter J. C. Moses, Jun 17 2016 *)
Showing 1-3 of 3 results.