cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274352 Convolution of A015723 and A000700.

Original entry on oeis.org

0, 1, 2, 4, 7, 10, 18, 26, 36, 53, 76, 104, 140, 190, 252, 336, 437, 564, 732, 936, 1186, 1504, 1894, 2366, 2950, 3659, 4520, 5564, 6822, 8330, 10152, 12326, 14906, 17996, 21662, 25996, 31135, 37190, 44314, 52704, 62532, 74036, 87504, 103212, 121496, 142798
Offset: 0

Views

Author

R. J. Mathar, Jun 18 2016

Keywords

Comments

Also the convolution of A080054 and A048272.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(d*
         [0, 2, -1, 2][1+irem(d, 4)], d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    g:= proc(n) option remember; add((-1)^(d+1), d=divisors(n)) end:
    a:= n-> add(b(j)*g(n-j), j=0..n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 18 2016
  • Mathematica
    q[n_, k_] := q[n, k] = If[n < k || k < 1, 0, If[n == 1, 1, q[n - k, k] + q[n - k, k - 1]]]; Table[Sum[SeriesCoefficient[Product[1 + x^j, {j, 1, k, 2}], {x, 0, k}] Sum[i q[#, i], {i, 1, Floor[(Sqrt[8 # + 1] - 1)/2]}] &[n - k], {k, 0, n}], {n, 0, 45}] (* Michael De Vlieger, Jun 18 2016, after Vaclav Kotesovec at A015723 and Vladimir Reshetnikov at A000700 *)

Formula

a(n) = Sum_{k=0..n} A015723(k)*A000700(n-k).
a(n) ~ log(2) * exp(Pi*sqrt(n/2)) / (Pi * 2^(3/4) * n^(1/4)). - Vaclav Kotesovec, Sep 14 2021