A274354 Number of factors L(i) > 1 of A274281(n), where L = A000032 (Lucas numbers, 2,1,3,4,..., with 1 excluded).
1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 3, 2, 1, 2, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 4, 3, 2, 2, 1, 2, 3, 2, 3, 3, 2, 3, 4, 3, 2, 3, 2, 1, 2, 3, 2, 3, 3, 3, 2, 3, 4, 3, 4, 2, 3, 2, 1, 2, 2, 3, 3, 2, 3, 3, 4, 3, 2, 3, 4, 3
Offset: 1
Examples
The products of distinct Lucas numbers (including 2, excluding 1), arranged in increasing order, comprise A274281 (with 1 removed). The list begins with 2, 3, 4, 6 = 2*3, 7, 8 = 2*4, 11, 12, 14, 18, 21, 22, 24 = 2*3*4, so that a(4) = 2, a(6) = 2, a(13) = 3.
Programs
-
Mathematica
r[1] := 2; r[2] := 1; r[n_] := r[n] = r[n - 1] + r[n - 2]; s = {1}; z = 40; f = Join[{2}, Map[r, 2 + Range[z]]]; Take[f, 10] Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; infQ[n_] := MemberQ[f, n]; ans = Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[ Rest[Subsets[Map[#[[1]] &, Select[Map[{#, infQ[#]} &, Divisors[s[[n]]]], #[[2]] && #[[1]] > 1 &]]]]], {n, 2, 200}]; Take[ans, 10] w = Map[Length, ans] Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A274349 *) Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A274350 *) (* Peter J. C. Moses, Jun 17 2016 *)