cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274365 Numbers n such that n and n+1 both have 30 divisors.

Original entry on oeis.org

180224, 257499, 579375, 1075599, 1990575, 2353616, 5598800, 10320624, 11560400, 13975983, 16951599, 17213552, 17651600, 17672499, 17784207, 20626991, 20660624, 21041775, 21912848, 22252400, 24533199, 24953103, 26161875, 26604207, 29232175, 29253392
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A005237 and A137493.

Programs

  • Mathematica
    SequencePosition[Table[If[DivisorSigma[0,n]==30,1,0],{n,3*10^7}],{1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 10 2018 *)
  • PARI
    is(n)=numdiv(n)==30 && numdiv(n+1)==30
    
  • PARI
    list(lim)=my(v=List(),t); forprime(p=2,sqrtnint(lim\2,14), my(p14=p^14); forprime(q=2,lim\p14, if(p==q, next); t=p14*q; if(numdiv(t+1)==30, listput(v,t)); if(numdiv(t-1)==30, listput(v,t-1)))); forprime(p=2,sqrtnint(lim\4,9), my(p9=p^9); forprime(q=2,sqrtint(lim\p9), if(p==q, next); t=p9*q^2; if(numdiv(t+1)==30, listput(v,t)); if(numdiv(t-1)==30, listput(v,t-1)))); forprime(p=2,sqrtnint(lim\16,5), my(p5=p^5); forprime(q=2,sqrtnint(lim\p5,4), if(p==q, next); t=p5*q^4; if(numdiv(t+1)==30, listput(v,t)); if(numdiv(t-1)==30, listput(v,t-1)))); forprime(p=2,sqrtnint(lim\12,4), my(p4=p^4); forprime(q=2,sqrtint(lim\p4\2), if(p==q, next); my(q2=q^2); forprime(r=2,lim\p4\q2, if(p==r || q==r, next); t=p4*q2*r; if(numdiv(t+1)==30, listput(v,t)); if(numdiv(t-1)==30, listput(v,t-1))))); Set(v)