A274397 Positive integers m such that sigma(m) is divisible by 5.
8, 19, 24, 27, 29, 38, 40, 54, 56, 57, 58, 59, 72, 76, 79, 87, 88, 89, 95, 104, 108, 109, 114, 116, 118, 120, 128, 133, 135, 136, 139, 145, 149, 152, 158, 168, 171, 174, 177, 178, 179, 184, 189, 190, 199, 200, 203, 209, 216, 218, 228, 229, 232, 236, 237, 239, 247, 248, 261, 264, 266, 267, 269, 270, 278, 280, 285, 290, 295, 296, 297
Offset: 1
Keywords
Examples
Some values for a(2^k): We have a(2) = 19, a(4) = 27, a(8) = 54, a(16) = 87, a(32) = 145, a(64) = 270, a(128) = 488, a(256) = 919, a(512) = 1736, a(1024) = 3267, a(2048) = 6258, a(4096) = 12035, a(8192) = 23160, a(16384) = 44878, a(32768) = 87207, a(65536) = 169911, a(131072) = 332009, a(262144) = 650031, a(524288) = 1274569, a(1048576) = 2503510, a(2097152) = 4924370, a(4194304) = 9697475, a(8388608) = 19116191.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Tewodros Amdeberhan, Victor H. Moll, Vaishavi Sharma, and Diego Villamizar, Arithmetic properties of the sum of divisors, arXiv:2007.03088 [math.NT], 2020. See p. 20.
- N. J. A. Sloane, Needed: smallest number k with sigma(sigma(k)) = 5k, SeqFan list, Jul 02 2016.
Crossrefs
Programs
-
Maple
select(t -> numtheory:-sigma(t) mod 5 = 0, [$1..1000]); # Robert Israel, Jul 12 2016
-
Mathematica
Select[Range[300], Divisible[DivisorSigma[1, #], 5]&] (* Jean-François Alcover, Apr 09 2019 *)
-
PARI
is(n)=sigma(n)%5==0
-
PARI
is(n)=for(i=1,#n=factor(n)~,n[1,i] != 5 && (n[2,i]+1) % [5,4,4,2][n[1,i]%5] == 0 && return(1))
Formula
lim_{n->oo} a(k)/k = 2 (conjectured; cf. Examples).
Extensions
Edited by M. F. Hasler, Jul 10 2016
Comments