cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274397 Positive integers m such that sigma(m) is divisible by 5.

Original entry on oeis.org

8, 19, 24, 27, 29, 38, 40, 54, 56, 57, 58, 59, 72, 76, 79, 87, 88, 89, 95, 104, 108, 109, 114, 116, 118, 120, 128, 133, 135, 136, 139, 145, 149, 152, 158, 168, 171, 174, 177, 178, 179, 184, 189, 190, 199, 200, 203, 209, 216, 218, 228, 229, 232, 236, 237, 239, 247, 248, 261, 264, 266, 267, 269, 270, 278, 280, 285, 290, 295, 296, 297
Offset: 1

Views

Author

M. F. Hasler, Jul 02 2016

Keywords

Comments

See the subsequence A274685 of odd terms for a remark on frequent pairs of the form (30k-3, 30k-1).
If m is in the sequence and gcd(k,m)=1, then k*m is also in the sequence. One might call "primitive" those terms which are not of this form, i.e., not a "coprime" multiple of an earlier term. The primitive terms are the primes and powers of primes within the sequence, cf. below.
Integers m > 0 where an integer k exists such that A000203(m) = A008587(k). - Felix Fröhlich, Jul 02 2016
For any prime p <> 5 there is an exponent k in {1, 3, 4} (depending on whether p is in A030433, A003631 or A030430) such that p^k is in this sequence. Given these p^k, the sequence consists of all numbers of the form n*p^(q*(k+1)-1) where n is coprime to p and q >= 1. Otherwise said, all numbers m which have some prime factor p with multiplicity q*(k+1)-1, where k = k(p) in {1, 3, 4} as introduced before. - M. F. Hasler, Jul 10 2016

Examples

			Some values for a(2^k): We have a(2) = 19, a(4) = 27, a(8) = 54, a(16) = 87, a(32) = 145, a(64) = 270, a(128) = 488, a(256) = 919, a(512) = 1736, a(1024) = 3267, a(2048) = 6258, a(4096) = 12035, a(8192) = 23160, a(16384) = 44878, a(32768) = 87207, a(65536) = 169911, a(131072) = 332009, a(262144) = 650031, a(524288) = 1274569, a(1048576) = 2503510, a(2097152) = 4924370, a(4194304) = 9697475, a(8388608) = 19116191.
		

Crossrefs

Cf. A000203, A028983 (sigma even), A087943 (sigma = 3k), A248150 (sigma = 4k); A028982 (sigma is odd), A248151 (sigma is not divisible by 4); A272930 (sigma(sigma(k)) = nk).

Programs

  • Maple
    select(t -> numtheory:-sigma(t) mod 5 = 0, [$1..1000]); # Robert Israel, Jul 12 2016
  • Mathematica
    Select[Range[300], Divisible[DivisorSigma[1, #], 5]&] (* Jean-François Alcover, Apr 09 2019 *)
  • PARI
    is(n)=sigma(n)%5==0
    
  • PARI
    is(n)=for(i=1,#n=factor(n)~,n[1,i] != 5 && (n[2,i]+1) % [5,4,4,2][n[1,i]%5] == 0 && return(1))

Formula

lim_{n->oo} a(k)/k = 2 (conjectured; cf. Examples).

Extensions

Edited by M. F. Hasler, Jul 10 2016