A274432 Products of distinct tribonacci numbers (A000213).
3, 5, 9, 15, 17, 27, 31, 45, 51, 57, 85, 93, 105, 135, 153, 155, 171, 193, 255, 279, 285, 315, 355, 459, 465, 513, 525, 527, 579, 653, 765, 837, 855, 945, 965, 969, 1065, 1201, 1395, 1539, 1575, 1581, 1737, 1767, 1775, 1785, 1959, 2209, 2295, 2565, 2635
Offset: 1
Examples
The tribonacci numbers are 1,1,1,3,5,9,17,31,..., so that the sequence of all products of distinct members, in increasing order, is (3, 5, 9, 15, 17, 27, 31, 45,...).
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
r[1] := 1; r[2] := 1; r[3] = 1; r[n_] := r[n] = r[n - 1] + r[n - 2] + r[n - 3]; s = {1}; z = 60; f = Map[r, Range[z]]; Take[f, 20] Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; Take[s, 2 z] (*A274432*) infQ[n_] := MemberQ[f, n]; ans = Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[ Rest[Subsets[Map[#[[1]] &, Select[Map[{#, infQ[#]} &, Divisors[s[[n]]]], #[[2]] && #[[1]] > 1 &]]]]], {n, 2, 300}]; Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A274433 *) Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A274434 *) (* Peter J. C. Moses, Jun 17 2016 *)