A274426 Numbers that are a product of two distinct Fibonacci numbers >1 or two distinct Lucas numbers > 1.
6, 10, 12, 15, 16, 21, 24, 26, 28, 33, 39, 40, 42, 44, 54, 63, 65, 68, 72, 77, 87, 102, 104, 105, 110, 116, 126, 141, 165, 168, 170, 178, 188, 198, 203, 228, 267, 272, 273, 275, 288, 304, 319, 329, 369, 432, 440, 442, 445, 466, 492, 517, 522, 532, 597, 699
Offset: 1
Examples
U = {6,10,15,16,...}, V = {12,21,28,...}, so that A274426 = (6,10,12,15,16,21,...).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
z = 200; f[n_] := Fibonacci[n]; u = Take[Sort[Flatten[Table[f[m] f[n], {n, 3, z}, {m, 3, n - 1}]]], z] g[n_] := LucasL[n]; v = Take[Sort[Flatten[Table[g[u] g[v], {u, 2, z}, {v, 2, u - 1}]]], z] Intersection[u, v] (* empty *) w = Union[u, v] (* A274426 *) f1 = Select[Range[300], MemberQ[u, w[[#]]] &] (* A274427 *) g1 = Select[Range[300], MemberQ[v, w[[#]]] &] (* A274428 *)
Comments