cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274434 Products of three distinct tribonacci numbers > 1.

Original entry on oeis.org

135, 255, 459, 465, 765, 837, 855, 1395, 1539, 1575, 1581, 2565, 2635, 2835, 2895, 2907, 4725, 4743, 4845, 5211, 5301, 5325, 5355, 8685, 8721, 8835, 8925, 9585, 9765, 9795, 9843, 15903, 15975, 16065, 16275, 16405, 17631, 17949, 17955, 18015, 18105, 29295
Offset: 1

Views

Author

Clark Kimberling, Jun 22 2016

Keywords

Comments

Are these unique among all products of distinct tribonacci numbers (A000213)? (See A274432.)

Examples

			The tribonacci numbers > 1 are 3,5,9,17,31,57,..., so that the trinary products in increasing order are 135, 255, 459, 465, 765,...
		

Crossrefs

Programs

  • Mathematica
    r[1] := 1; r[2] := 1; r[3] = 1; r[n_] := r[n] = r[n - 1] + r[n - 2] + r[n - 3];
    s = {1}; z = 60; f = Map[r, Range[z]]; Take[f, 20]
    Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}];
    Take[s, 2 z]  (* A274432 *)
    infQ[n_] := MemberQ[f, n];
    ans = Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[
    Rest[Subsets[Map[#[[1]] &, Select[Map[{#, infQ[#]} &, Divisors[s[[n]]]], #[[2]] && #[[1]] > 1 &]]]]], {n, 2, 300}];
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A274433 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A274434 *)
    (* Peter J. C. Moses, Jun 17 2016 *)