cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274443 Least composite squarefree number k such that (p-n) | (k-1) for all primes p dividing n.

Original entry on oeis.org

561, 21, 85, 15, 21, 35, 33, 21, 65, 91, 57, 91, 133, 55, 161, 91, 57, 133, 33, 253, 65, 91, 145, 115, 217, 451, 161, 703, 253, 551, 561, 253, 481, 217, 129, 451, 301, 1081, 161, 1189, 145, 989, 217, 235, 481, 703, 649, 329, 265, 1081, 1121, 1219, 145, 1037, 721
Offset: 1

Views

Author

Paolo P. Lava, Jun 23 2016

Keywords

Examples

			Prime factors of 561 are 3, 11 and 17: (561 - 1) / (3 - 1) = 560 / 2 = 280, (561 - 1) / (11 - 1) = 560 / 10 = 56 and (561 - 1) / (17 - 1) = 560 / 16 = 35.
Prime factors of 21 are 3 and 7: (21 - 1) / (3 - 2) = 20 / 1 = 20, (21 - 1) / (7 - 2) = 20 / 5 = 4.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local d,k,n,ok,p;
    for k from 1 to q do for n from 2 to q do
    if not isprime(n) and issqrfree(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][1]=k then ok:=0; break; else
    if not type((n-1)/(p[d][1]-k),integer) then ok:=0; break; fi; fi; od;
    if ok=1 then print(n); break; fi; fi; od; od; end: P(10^9);
  • Mathematica
    t = Select[Range@2000, SquareFreeQ@ # && CompositeQ@ # &]; Table[SelectFirst[t, Function[k, AllTrue[First /@ FactorInteger@ k, If[# == 0, False, Divisible[k - 1, #]] &[# - n] &]]], {n, 55}] (* Michael De Vlieger, Jun 24 2016, Version 10 *)