A274444 a(n) = smallest composite squarefree number k such that (p-n) | (k+1) for all primes dividing k.
15, 65, 35, 15, 21, 35, 15, 35, 35, 77, 35, 55, 55, 143, 119, 51, 95, 155, 55, 323, 95, 119, 39, 391, 87, 209, 119, 299, 143, 341, 319, 629, 259, 899, 407, 185, 119, 299, 287, 1517, 203, 799, 159, 155, 407, 1189, 119, 517, 341, 1763, 1363, 629, 335, 2491, 493, 3599
Offset: 1
Examples
a(1) = 15: Prime factors of 15 are 3 and 5: (15 + 1) / (3 - 1) = 16 / 2 = 8 and (15 + 1) / (5 - 1) = 16 / 4 = 4. a(2) = 6: Prime factors of 65 are 5 and 13: (65 + 1) / (5 - 2) = 66 / 3 = 22 and (65 + 1) / (13 - 2) = 66 / 11 = 6.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..250
Crossrefs
Programs
-
Maple
with(numtheory); P:=proc(q) local d,k,n,ok,p; for k from 1 to q do for n from 2 to q do if not isprime(n) and issqrfree(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][1]=k then ok:=0; break; else if not type((n+1)/(p[d][1]-k),integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); break; fi; fi; od; od; end: P(10^9);
-
Mathematica
t = Select[Range[10^4], SquareFreeQ@ # && CompositeQ@ # &]; Table[SelectFirst[t, Function[k, AllTrue[First /@ FactorInteger@ k, If[# == 0, False, Divisible[k + 1, #]] &[# - n] &]]], {n, 56}] (* Michael De Vlieger, Jun 24 2016, Version 10 *)