A274443 Least composite squarefree number k such that (p-n) | (k-1) for all primes p dividing n.
561, 21, 85, 15, 21, 35, 33, 21, 65, 91, 57, 91, 133, 55, 161, 91, 57, 133, 33, 253, 65, 91, 145, 115, 217, 451, 161, 703, 253, 551, 561, 253, 481, 217, 129, 451, 301, 1081, 161, 1189, 145, 989, 217, 235, 481, 703, 649, 329, 265, 1081, 1121, 1219, 145, 1037, 721
Offset: 1
Examples
Prime factors of 561 are 3, 11 and 17: (561 - 1) / (3 - 1) = 560 / 2 = 280, (561 - 1) / (11 - 1) = 560 / 10 = 56 and (561 - 1) / (17 - 1) = 560 / 16 = 35. Prime factors of 21 are 3 and 7: (21 - 1) / (3 - 2) = 20 / 1 = 20, (21 - 1) / (7 - 2) = 20 / 5 = 4.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..250
Crossrefs
Programs
-
Maple
with(numtheory); P:=proc(q) local d,k,n,ok,p; for k from 1 to q do for n from 2 to q do if not isprime(n) and issqrfree(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][1]=k then ok:=0; break; else if not type((n-1)/(p[d][1]-k),integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); break; fi; fi; od; od; end: P(10^9);
-
Mathematica
t = Select[Range@2000, SquareFreeQ@ # && CompositeQ@ # &]; Table[SelectFirst[t, Function[k, AllTrue[First /@ FactorInteger@ k, If[# == 0, False, Divisible[k - 1, #]] &[# - n] &]]], {n, 55}] (* Michael De Vlieger, Jun 24 2016, Version 10 *)