A274446 a(n) is the smallest composite squarefree number k such that (p+n) | (k+1) for all primes dividing k.
399, 299, 55, 611, 143, 5549, 39, 155, 493, 615383, 713, 3247, 119, 1304489, 1333, 31415, 2599, 749, 2183, 440153, 155, 75499, 119, 168600949, 4223, 223649, 559, 66299, 6407, 15157, 3431, 85499, 799, 31589, 7313
Offset: 1
Examples
Prime factors of 399 are 3, 7 and 19. (399 + 1) / (3 + 1) = 400 / 4 = 100, (399 + 1) / (7 + 1) = 400 / 8 = 50 and (399 + 1) / (19 + 1) = 400 / 20 = 20. Prime factors of 299 are 13 and 23. (399 + 1) / (13 + 2) = 300 / 15 = 20 and (399 + 1) / (23 + 2) = 300 / 25 = 12.
Crossrefs
Programs
-
Maple
with(numtheory); P:=proc(q) local d,k,n,ok,p; for k from 1 to q do for n from 2 to q do if not isprime(n) and issqrfree(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if not type((n+1)/(p[d][1]+k),integer) then ok:=0; break; fi; od; if ok=1 then print(n); break; fi; fi; od; od; end: P(10^9);
-
Mathematica
t = Select[Range[2000000], SquareFreeQ@ # && CompositeQ@ # &]; Table[SelectFirst[t, Function[k, AllTrue[First /@ FactorInteger@ k, Divisible[k + 1, # + n] &]]], {n, 23}] (* Michael De Vlieger, Jun 24 2016, Version 10 *)
-
PARI
isok(k,n) = {if (! issquarefree(k), return (0)); vp = factor(k) [,1]; if (#vp == 1, return (0)); for (i=1, #vp, if ((k+1) % (n+vp[i]), return (0));); 1;} a(n) = {my(k=2); while (! isok(k,n), k++); k;} \\ Michel Marcus, Jun 28 2016
Extensions
a(24) from Giovanni Resta, Jun 23 2016