cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274468 The length of the initial uninterrupted number of tau numbers in the chain defined by repeated subtraction of the number of divisors, starting with the n-th tau number.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 2, 4, 5, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

R. J. Mathar, Jun 24 2016

Keywords

Comments

This is the persistence of the n-th tau number staying a tau number under the map x->A049820(x).
Records: 1, 2,...,8 occur at n=1, 6, 14, 16, 17, 7393, 7394, 8064,...

Examples

			a(196)=4 because the 196th tau number is 2016. Subtracting tau(2016)=36 gives 1980, which is a tau number. Subtracting tau(1980)=36 gives 1944, which is a tau number. Subtracting tau(1944)=24 gives 1920, which is a tau number. Subtracting tau(1920)=32 gives 1888 which is not a tau number. The length of the chain 2016->1980->1944->1920 is 4.
		

Crossrefs

Programs

  • Maple
    isA033950 := proc(n)
        if n <= 0 then
            false;
        elif n = 1 then
            true;
        else
            modp(n, numtheory[tau](n)) = 0 ;
        end if;
    end proc:
    A274468 := proc(n)
        option remember;
        local a, t ;
        t := A033950(n) ;
        a := 1 ;
        while true do
            t := A049820(t) ;
            if isA033950(t) then
                a := a+1 ;
            else
                break;
            end if;
        end do:
        a ;
    end proc:
  • Mathematica
    isA033950[n_] := Which[n <= 0, False, n == 1, True, True, IntegerQ[ n/DivisorSigma[0, n]]];
    A033950[n_] := A033950[n] = Module[{k}, If[n == 1, 1, For[k = A033950[n-1] + 1, True, k++, If[IntegerQ[k/DivisorSigma[0, k]], Return[k]]]]];
    A274468[n_] := A274468[n] = Module[{a, t}, t = A033950[n]; a = 1; While[ True, t = t-DivisorSigma[0, t]; If[isA033950[t], a++, Break[]]]; a];
    Table[A274468[n], {n, 1, 100}] (* Jean-François Alcover, Aug 11 2023, after R. J. Mathar *)