A274468 The length of the initial uninterrupted number of tau numbers in the chain defined by repeated subtraction of the number of divisors, starting with the n-th tau number.
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 2, 4, 5, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
a(196)=4 because the 196th tau number is 2016. Subtracting tau(2016)=36 gives 1980, which is a tau number. Subtracting tau(1980)=36 gives 1944, which is a tau number. Subtracting tau(1944)=24 gives 1920, which is a tau number. Subtracting tau(1920)=32 gives 1888 which is not a tau number. The length of the chain 2016->1980->1944->1920 is 4.
Links
- C. Meller, Tau numbers, June 2016.
Programs
-
Maple
isA033950 := proc(n) if n <= 0 then false; elif n = 1 then true; else modp(n, numtheory[tau](n)) = 0 ; end if; end proc: A274468 := proc(n) option remember; local a, t ; t := A033950(n) ; a := 1 ; while true do t := A049820(t) ; if isA033950(t) then a := a+1 ; else break; end if; end do: a ; end proc:
-
Mathematica
isA033950[n_] := Which[n <= 0, False, n == 1, True, True, IntegerQ[ n/DivisorSigma[0, n]]]; A033950[n_] := A033950[n] = Module[{k}, If[n == 1, 1, For[k = A033950[n-1] + 1, True, k++, If[IntegerQ[k/DivisorSigma[0, k]], Return[k]]]]]; A274468[n_] := A274468[n] = Module[{a, t}, t = A033950[n]; a = 1; While[ True, t = t-DivisorSigma[0, t]; If[isA033950[t], a++, Break[]]]; a]; Table[A274468[n], {n, 1, 100}] (* Jean-François Alcover, Aug 11 2023, after R. J. Mathar *)
Comments