A134419 Numbers n for which the generalized Pell equation x^2 - n*y^2 = n(n-1)(n+1)/3 has an integer solution for x and y.
1, 2, 4, 11, 16, 23, 24, 25, 26, 33, 47, 49, 50, 52, 59, 64, 73, 74, 88, 96, 97, 100, 107, 121, 122, 146, 148, 169, 177, 184, 191, 193, 194, 196, 218, 239, 241, 242, 244, 249, 256, 276, 289, 292, 297, 299, 311, 312, 313, 337, 338, 347, 352, 361, 362, 376, 383
Offset: 1
Keywords
Links
- Christopher E. Thompson, Table of n, a(n) for n = 1..13437 (up to 250000, extends first 200 terms computed by T. D. Noe).
Programs
-
Mathematica
t={}; n=0; While[Length[t]<200, n++; If[Reduce[x^2-n*y^2==n(n^2-1)/3, {x,y}, Integers] =!= False, AppendTo[t,n]]]; t
Comments