cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274478 G.f. satisfies: A(x)^2 = A( x^2/(1 - 2*x - 2*x^2) ).

Original entry on oeis.org

1, 1, 3, 7, 20, 56, 166, 498, 1530, 4762, 15022, 47862, 153859, 498239, 1623779, 5321059, 17520994, 57937106, 192304222, 640446358, 2139414409, 7166431909, 24065926653, 81003492725, 273229977460, 923438683996, 3126674842896, 10604713671208, 36025426127382, 122566140787390, 417584644921806, 1424610537707166, 4866239784751346, 16642071212737394, 56978489024931038, 195289731964727862, 670023314236521396, 2301024202252503308, 7909580344156028160
Offset: 1

Views

Author

Paul D. Hanna, Jul 26 2016

Keywords

Comments

Radius of convergence of g.f. A(x) is r = (sqrt(17) - 3)/4 where r = r^2/(1-2*r-2*r^2) with A(r) = 1.
Compare g.f. with the identities:
(1) F(x)^2 = F( x^2/(1 - 2*x + 2*x^2) ) when F(x) = x/(1-x).
(2) M(x)^2 = M( x^2/(1 - 2*x) ) when M(x) = (1-x - sqrt(1-2*x-3*x^2))/(2*x) is a g.f. of the Motzkin numbers (A001006).

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 7*x^4 + 20*x^5 + 56*x^6 + 166*x^7 + 498*x^8 + 1530*x^9 + 4762*x^10 + 15022*x^11 + 47862*x^12 +...
such that A( x^2/(1-2*x-2*x^2) ) = A(x)^2.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 7*x^4 + 20*x^5 + 63*x^6 + 194*x^7 + 613*x^8 + 1944*x^9 + 6236*x^10 + 20136*x^11 + 65496*x^12 + 214272*x^13 + 704774*x^14 + 2328852*x^15 +...
The series reversion of the g.f. A(x) begins:
Series_Reversion(A(x)) = x - x^2 - x^3 + 3*x^4 - 7*x^6 + 4*x^7 + 15*x^8 - 16*x^9 - 32*x^10 + 51*x^11 + 69*x^12 - 153*x^13 - 148*x^14 + 445*x^15 + 315*x^16 +...
which is related to A107087 by:
x/Series_Reversion(A(x)) = 1 + x + 2*x^2 - x^4 + 2*x^6 - 5*x^8 + 12*x^10 - 30*x^12 + 82*x^14 - 233*x^16 + 668*x^18 - 1949*x^20 +...+ A107087(n)*x^(2*n) +...
The g.f. G(x) of A107087 begins:
G(x) = 1 + 2*x - x^2 + 2*x^3 - 5*x^4 + 12*x^5 - 30*x^6 + 82*x^7 - 233*x^8 + 668*x^9 - 1949*x^10 + 5802*x^11 - 17503*x^12 +...
where G(x)^2 = G(x^2) + 4*x.
Also, we have A(x/(1 + x + 2*x^2))^2 = A(x^2/(1 + x^2 + 4*x^4)), where the series begin:
A(x/(1 + x + 2*x^2)) = x - x^5 - x^9 + 8*x^13 - 13*x^17 - 8*x^21 - x^25 + 307*x^29 + 135*x^33 - 9641*x^37 + 36869*x^41 +...
A(x^2/(1 + x^2 + 4*x^4)) = x^2 - 2*x^6 - x^10 + 18*x^14 - 41*x^18 - 6*x^22 + 104*x^26 + 424*x^30 - 301*x^34 - 19974*x^38 + 97752*x^42 +...
which is equal to A(x/(1 + x + 2*x^2))^2.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); for(i=1, #binary(n+1), A = sqrt( subst(A, x, x^2/(1-2*x-2*x^2 +x*O(x^n)) ) ) ); polcoeff(A, n)}
    for(n=1, 40, print1(a(n), ", "))

Formula

G.f. A(x) satisfies: A( x/(1 + x + 2*x^2) )^2 = A( x^2/(1 + x^2 + 4*x^4) ).
Let G(x) denote the g.f. of A107087, where G(x)^2 = G(x^2) + 4*x, then g.f. A(x) satisfies:
(1) A(x) = x/(1-x) * G( A(x)^2 ),
(2) G(x^2) = x/Series_Reversion(A(x)) - x,
(3) A( x/(G(x^2) + x) ) = x,
(4) A(x)^2/(G(A(x)^4) + A(x)^2) = x^2/(1 - 2*x - 2*x^2).