A274486 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k horizontal segments (n>=2, k>=1). A horizontal segment is a maximal sequence of adjacent horizontal steps (1,0).
1, 2, 3, 2, 4, 8, 1, 5, 20, 10, 6, 40, 45, 6, 7, 70, 140, 56, 2, 8, 112, 350, 280, 44, 9, 168, 756, 1008, 366, 20, 10, 240, 1470, 2940, 1920, 320, 5, 11, 330, 2640, 7392, 7590, 2552, 190, 12, 440, 4455, 16632, 24684, 13904, 2445, 70
Offset: 2
Examples
Row 4 is 3,2 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1],[1,2],[2,1],[2,2],[3] and, clearly, they have 1,2,2,1,1 horizontal segments. Triangle starts 1; 2; 3,2; 4,8,1; 5,20,10; 6,40,45,6.
Links
- Alois P. Heinz, Rows n = 2..200, flattened
- M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
- Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016
- Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016
Programs
-
Maple
G := ((1-2*z+z^2-2*t*z^2-sqrt((1-z)*((1-z)^3-4*t*z^2*(1-z+t*z))))*(1/2))/(t*z): Gser := simplify(series(G,z = 0,23)): for n from 2 to 18 do P[n] := sort(expand(coeff(Gser,z,n))) end do: for n from 2 to 18 do seq(coeff(P[n],t,j), j = 1 .. degree(P[n])) end do; # yields sequence in triangular form # second Maple program: b:= proc(n, y, t) option remember; expand( `if`(n=0, (1-t), `if`(t<0, 0, b(n-1, y+1, 1))+ `if`(t>0 or y<2, 0, b(n, y-1, -1))+ `if`(y<1, 0, b(n-1, y, 0)*`if`(t=0, 1, z)))) end: T:= n-> (p-> seq(coeff(p, z, i), i=1..degree(p)))(b(n, 0$2)): seq(T(n), n=2..20); # Alois P. Heinz, Jun 27 2016
-
Mathematica
b[n_, y_, t_] := b[n, y, t] = Expand[If[n == 0, 1 - t, If[t < 0, 0, b[n - 1, y + 1, 1]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1]] + If[y < 1, 0, b[n - 1, y, 0]*If[t == 0, 1, z]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 1, Exponent[p, z]}]][b[n, 0, 0]]; Table[T[n], {n, 2, 20}] // Flatten (* Jean-François Alcover, Dec 02 2016, after Alois P. Heinz *)
Formula
G.f.: G = (1-2z+z^2-2tz^2-sqrt((1-z)((1-z)^3-4tz^2*(1-z+tz))))/(2tz).
Comments