cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274486 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k horizontal segments (n>=2, k>=1). A horizontal segment is a maximal sequence of adjacent horizontal steps (1,0).

Original entry on oeis.org

1, 2, 3, 2, 4, 8, 1, 5, 20, 10, 6, 40, 45, 6, 7, 70, 140, 56, 2, 8, 112, 350, 280, 44, 9, 168, 756, 1008, 366, 20, 10, 240, 1470, 2940, 1920, 320, 5, 11, 330, 2640, 7392, 7590, 2552, 190, 12, 440, 4455, 16632, 24684, 13904, 2445, 70
Offset: 2

Views

Author

Emeric Deutsch and Sergi Elizalde, Jun 27 2016

Keywords

Comments

Sum of entries in row n = A082582(n).
Sum(k*T(n,k), k>=0) = A273345(n+1).

Examples

			Row 4 is 3,2 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1],[1,2],[2,1],[2,2],[3] and, clearly, they have 1,2,2,1,1 horizontal segments.
Triangle starts
1;
2;
3,2;
4,8,1;
5,20,10;
6,40,45,6.
		

Crossrefs

Programs

  • Maple
    G := ((1-2*z+z^2-2*t*z^2-sqrt((1-z)*((1-z)^3-4*t*z^2*(1-z+t*z))))*(1/2))/(t*z): Gser := simplify(series(G,z = 0,23)): for n from 2 to 18 do P[n] := sort(expand(coeff(Gser,z,n))) end do: for n from 2 to 18 do seq(coeff(P[n],t,j), j = 1 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y, t) option remember; expand(
          `if`(n=0, (1-t), `if`(t<0, 0, b(n-1, y+1, 1))+
          `if`(t>0 or y<2, 0, b(n, y-1, -1))+
          `if`(y<1, 0, b(n-1, y, 0)*`if`(t=0, 1, z))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=1..degree(p)))(b(n, 0$2)):
    seq(T(n), n=2..20);  # Alois P. Heinz, Jun 27 2016
  • Mathematica
    b[n_, y_, t_] := b[n, y, t] = Expand[If[n == 0, 1 - t, If[t < 0, 0, b[n - 1, y + 1, 1]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1]] + If[y < 1, 0, b[n - 1, y, 0]*If[t == 0, 1, z]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 1, Exponent[p, z]}]][b[n, 0, 0]]; Table[T[n], {n, 2, 20}] // Flatten (* Jean-François Alcover, Dec 02 2016, after Alois P. Heinz *)

Formula

G.f.: G = (1-2z+z^2-2tz^2-sqrt((1-z)((1-z)^3-4tz^2*(1-z+tz))))/(2tz).