cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274493 Number of bargraphs of semiperimeter n having no horizontal segments of length 1 (n>=2). By a horizontal segment of length 1 we mean a horizontal step that is not adjacent to any other horizontal step.

Original entry on oeis.org

0, 1, 2, 3, 6, 13, 27, 57, 123, 267, 584, 1289, 2864, 6399, 14373, 32435, 73498, 167175, 381551, 873541, 2005622, 4616895, 10653607, 24638263, 57097885, 132575577, 308378460, 718506295, 1676706422, 3918515001, 9170350093, 21488961641, 50417138776, 118425429213, 278476687643
Offset: 2

Views

Author

Emeric Deutsch and Sergi Elizalde, Jun 27 2016

Keywords

Examples

			a(4)=2 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1],[1,2],[2,1],[2,2],[3] and the corresponding pictures give the values 0,2,2,0,1 for the number of horizontal segments of length 1.
		

Crossrefs

Programs

  • Maple
    g:=((1-2*z+z^2-2*z^3-sqrt((1-z)*(1-3*z+3*z^2-5*z^3+4*z^4-4*z^5)))*(1/2))/z^2: gser:=series(g,z=0,40): seq(coeff(gser,z,n),n=2..36);

Formula

a(n) = A274491(n,0).
G.f.: g(z)=(1-2z+z^2-2z^3-sqrt((1-z)(1-3z+3z^2-5z^3+4z^4-4z^5)))/(2z^2).
D-finite with recurrence (n+2)*a(n) +2*(-2*n-1)*a(n-1) +6*(n-1)*a(n-2) +4*(-2*n+5)*a(n-3) +9*(n-4)*a(n-4) +4*(-2*n+11)*a(n-5) +4*(n-7)*a(n-6)=0. - R. J. Mathar, Jul 22 2022