cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A274495 The length of the longest initial sequence of the form UHUH..., summed over all bargraphs having semiperimeter n (n>=2).

Original entry on oeis.org

2, 3, 9, 23, 62, 171, 482, 1384, 4036, 11924, 35619, 107407, 326521, 999675, 3079634, 9539366, 29693294, 92831327, 291366477, 917765199, 2900217452, 9192097510, 29213057684, 93073003438, 297215560553, 951144390092, 3049877146281, 9797605279905
Offset: 2

Views

Author

Keywords

Examples

			a(4) = 9 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and the corresponding drawings show that the sum of the lengths of their longest initial sequence of the form UHUH... is 2+4+1+1+1.
		

Crossrefs

Programs

  • Maple
    Q := sqrt((1-z)*(1-3*z-z^2-z^3)): g := (((1-z)*(1-4*z^2-3*z^3-2*z^4)-(1+z-z^2-2*z^3)*Q)*(1/2))/(z*(1-z)): gser := series(g, z = 0, 38): seq(coeff(gser, z, n), n = 2 .. 34);
  • Mathematica
    terms = 28;
    g[z_] = (((1-z)(1 - 4z^2 - 3z^3 - 2z^4) - (1 + z - z^2 - 2z^3)*Q)(1/2))/(z (1-z)) /. Q -> Sqrt[(1-z)(1 - 3z - z^2 - z^3)];
    Drop[CoefficientList[g[z] + O[z]^(terms+2), z], 2] (* Jean-François Alcover, Aug 07 2018 *)

Formula

G.f.: g(z) = ((1-z)*(1-4*z^2-3*z^3-2*z^4)-(1+z-z^2-2*z^3)*Q)/(2*z*(1-z)), where Q = sqrt((1-z)*(1-3*z-z^2-z^3)).
a(n) = Sum_{k>=1} k*A274494(n,k).
D-finite with recurrence -(n+1)*(19*n-44)*a(n) +n*(43*n-65)*a(n-1) +2*(47*n^2-289*n+342)*a(n-2) +2*(-33*n^2+170*n-61)*a(n-3) +(-19*n^2+87*n+22)*a(n-4) -(33*n-31)*(n-8)*a(n-5)=0. - R. J. Mathar, Jul 22 2022
Showing 1-1 of 1 results.