A274499 Sum of the degrees of asymmetry of all ternary words of length n.
0, 0, 6, 18, 108, 324, 1458, 4374, 17496, 52488, 196830, 590490, 2125764, 6377292, 22320522, 66961566, 229582512, 688747536, 2324522934, 6973568802, 23245229340, 69735688020, 230127770466, 690383311398, 2259436291848, 6778308875544, 22029503845518, 66088511536554
Offset: 0
Examples
a(2) = 6 because the ternary words 00, 01, 02, 10, 11, 12, 20, 21, 22 have degrees of asymmetry 0, 1, 1, 1, 0, 1, 1, 1, 0, respectively.
Links
- Index entries for linear recurrences with constant coefficients, signature (3,9,-27).
Programs
-
Maple
a := proc (n) options operator, arrow: (1/6)*(2*n-1+(-1)^n)*3^n end proc: seq(a(n), n = 0 .. 30);
-
Mathematica
LinearRecurrence[{3, 9, -27}, {0, 0, 6}, 28] (* Jean-François Alcover, Sep 09 2024 *)
Formula
a(n) = (1/6)*(2n - 1 + (-1)^n)*3^n.
a(n) = Sum(k*A274498(n,k), k>=0).
From Chai Wah Wu, Dec 27 2018: (Start)
a(n) = 3*a(n-1) + 9*a(n-2) - 27*a(n-3) for n > 2.
G.f.: 6*x^2/((3*x - 1)^2*(3*x + 1)). (End)
Comments