cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274499 Sum of the degrees of asymmetry of all ternary words of length n.

Original entry on oeis.org

0, 0, 6, 18, 108, 324, 1458, 4374, 17496, 52488, 196830, 590490, 2125764, 6377292, 22320522, 66961566, 229582512, 688747536, 2324522934, 6973568802, 23245229340, 69735688020, 230127770466, 690383311398, 2259436291848, 6778308875544, 22029503845518, 66088511536554
Offset: 0

Views

Author

Emeric Deutsch, Jul 27 2016

Keywords

Comments

The degree of asymmetry of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the degree of asymmetry of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5).
A sequence is palindromic if and only if its degree of asymmetry is 0.

Examples

			a(2) = 6 because the ternary words 00, 01, 02, 10, 11, 12, 20, 21, 22 have degrees of asymmetry 0, 1, 1, 1, 0, 1, 1, 1, 0, respectively.
		

Crossrefs

Programs

  • Maple
    a := proc (n) options operator, arrow: (1/6)*(2*n-1+(-1)^n)*3^n end proc: seq(a(n), n = 0 .. 30);
  • Mathematica
    LinearRecurrence[{3, 9, -27}, {0, 0, 6}, 28] (* Jean-François Alcover, Sep 09 2024 *)

Formula

a(n) = (1/6)*(2n - 1 + (-1)^n)*3^n.
a(n) = Sum(k*A274498(n,k), k>=0).
From Chai Wah Wu, Dec 27 2018: (Start)
a(n) = 3*a(n-1) + 9*a(n-2) - 27*a(n-3) for n > 2.
G.f.: 6*x^2/((3*x - 1)^2*(3*x + 1)). (End)