A274511 a(n) is the only number m such that 7^(2^m) + 1 is divisible by A273948(n).
1, 3, 7, 4, 7, 2, 10, 9, 6, 15, 11, 14, 3, 5, 11, 12, 8, 17, 19, 5, 7, 21, 21, 4, 34, 25, 5, 9, 6, 20, 32, 17, 31, 40
Offset: 1
Crossrefs
Cf. A273948.
Programs
-
Mathematica
t = Select[Prime@ Range[3, 10^7], IntegerQ@ Log2@ MultiplicativeOrder[7, #] &]; Table[SelectFirst[Range@ 100, Divisible[7^(2^#) + 1, t[[n]]] &], {n, Length@ t}] (* Michael De Vlieger, Jun 29 2016, after Arkadiusz Wesolowski at A273948 *)
-
PARI
forstep(p=3, 10^15, 2, if(!Mod(p, 7)==0, if(isprime(p), o=znorder(Mod(7, p)); x=ispower(2*o); if(2^(x-1)==o, print1(x-2, ", ")))));