A274520 a(n) = ((1 + sqrt(7))^n - (1 - sqrt(7))^n)/sqrt(7).
0, 2, 4, 20, 64, 248, 880, 3248, 11776, 43040, 156736, 571712, 2083840, 7597952, 27698944, 100985600, 368164864, 1342243328, 4893475840, 17840411648, 65041678336, 237125826560, 864501723136, 3151758405632, 11490527150080, 41891604733952, 152726372368384
Offset: 0
Examples
Evolution from initial string "1": 1 -> 1001 -> 10011111111001 -> 1001111111100110011001100110011001100110011111111001 -> ... Therefore, number of zeros at step n: a(0) = 0; a(1) = 2; a(2) = 4; a(3) = 20, etc.
Links
- Ilya Gutkovskiy, Illustration (substitution system {0 -> 111, 1 -> 1001})
- Eric Weisstein's World of Mathematics, Substitution System
- Index entries for linear recurrences with constant coefficients, signature (2,6)
Programs
-
Mathematica
LinearRecurrence[{2, 6}, {0, 2}, 27]
-
PARI
a(n)=([0,1; 6,2]^n*[0;2])[1,1] \\ Charles R Greathouse IV, Jul 26 2016
Formula
O.g.f.: 2*x/(1 - 2*x - 6*x^2).
E.g.f.: 2*exp(x)*sinh(sqrt(7)*x)/sqrt(7).
Dirichlet g.f.: (PolyLog(s,1+sqrt(7)) - PolyLog(s,1-sqrt(7)))/sqrt(7), where PolyLog(s,x) is the polylogarithm function.
a(n) = 2*a(n-1) + 6*a(n-2).
a(n) = 2*A083099(n).
Lim_{n->infinity} a(n+1)/a(n) = 1 + sqrt(7) = 1 + A010465.
Comments