cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274520 a(n) = ((1 + sqrt(7))^n - (1 - sqrt(7))^n)/sqrt(7).

Original entry on oeis.org

0, 2, 4, 20, 64, 248, 880, 3248, 11776, 43040, 156736, 571712, 2083840, 7597952, 27698944, 100985600, 368164864, 1342243328, 4893475840, 17840411648, 65041678336, 237125826560, 864501723136, 3151758405632, 11490527150080, 41891604733952, 152726372368384
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 26 2016

Keywords

Comments

Number of zeros in substitution system {0 -> 111, 1 -> 1001} at step n from initial string "1" (see example).

Examples

			Evolution from initial string "1": 1 -> 1001 -> 10011111111001 -> 1001111111100110011001100110011001100110011111111001 -> ...
Therefore, number of zeros at step n:
a(0) = 0;
a(1) = 2;
a(2) = 4;
a(3) = 20, etc.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 6}, {0, 2}, 27]
  • PARI
    a(n)=([0,1; 6,2]^n*[0;2])[1,1] \\ Charles R Greathouse IV, Jul 26 2016

Formula

O.g.f.: 2*x/(1 - 2*x - 6*x^2).
E.g.f.: 2*exp(x)*sinh(sqrt(7)*x)/sqrt(7).
Dirichlet g.f.: (PolyLog(s,1+sqrt(7)) - PolyLog(s,1-sqrt(7)))/sqrt(7), where PolyLog(s,x) is the polylogarithm function.
a(n) = 2*a(n-1) + 6*a(n-2).
a(n) = 2*A083099(n).
Lim_{n->infinity} a(n+1)/a(n) = 1 + sqrt(7) = 1 + A010465.